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Outline

• Statistical interactions
• Causal interactions
• Robustness
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Part I. Statistical interaction
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Interaction

• The effect of one exposure often depends in some way
on the presence or absence of another exposure.

• We then say that there is interaction
between the two exposures.

• E.g. gene-environment interaction, gene-gene interaction, ...
• The process giving rise to illness and health

is often inherently complex.
• Interaction is one manifestation of this complexity.
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Example: breast cancer, alcohol and XRC3-T241M

• Odds ratios for breast cancer:

No Alcohol Alcohol
T/T or T/M 1 1.12 (0.81 to 1.54)

M/M 1.21 (0.70 to 2.09) 2.09 (1.16 to 3.78)
(Figueiredo et al., 2004)

• Gene-environment interaction:
XRC3-T241M appear to be associated with breast cancer
only when accompanied by alcohol consumption.

• Other examples are
• APOE and dietary cholesterol on serum cholesterol;
• PPARG2 and dietary fat on obesity;

(Hunter, 2005)
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Additive interaction

• Consider the following disease risks in a cohort study.

Unexposed (E = 0) Exposed (E = 1)
a/a (G = 0) p00 = 0.02 p01 = 0.05

a/A or A/A (G = 1) p10 = 0.04 p11 = 0.15

• We then say there is additive interaction
because the effect of the G and E together

p11 − p00 = 0.13
differs from the sum of the effects of each separately:

p10 − p00 + p01 − p00 = 0.02 + 0.03 = 0.05

• The additive interaction contrasts these numbers:
p11 + p00 − p01 − p10 = 0.13− 0.05 = 0.08.

• We say there is a positive or superadditive interaction
(as opposed to negative or subadditive).
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Multiplicative interaction

• Consider the following disease risks in a cohort study.

Unexposed (E = 0) Exposed (E = 1)
a/a (G = 0) p00 = 0.02 p01 = 0.05

a/A or A/A (G = 1) p10 = 0.04 p11 = 0.15

• We then say there is multiplicative interaction
because the effect of the G and E together

R11 = p11/p00 = 7.5

differs from the product of the effects of each separately:

R10 × R01 = (p10/p00)× (p01/p00) = 2× 2.5 = 5

• The multiplicative interaction contrasts these numbers:
R11

R10 × R01
= 1.5.
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Interactions are scale-dependent

• Consider the following disease risks in a cohort study.
Unexposed (E = 0) Exposed (E = 1)

a/a (G = 0) p00 = 0.02 p01 = 0.05
a/A or A/A (G = 1) p10 = 0.04 p11 = 0.10
• Is there additive and/or multiplicative interaction?
• Is the interaction positive or negative?
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Interactions are scale-dependent

• Consider the following disease risks in a cohort study.
Unexposed (E = 0) Exposed (E = 1)

a/a (G = 0) p00 = 0.02 p01 = 0.05
a/A or A/A (G = 1) p10 = 0.07 p11 = 0.10
• Is there additive and/or multiplicative interaction?
• Is the interaction positive or negative?

10 / 71



Interactions are scale-dependent

• Consider the following disease risks in a cohort study.
Unexposed (E = 0) Exposed (E = 1)

a/a (G = 0) p00 = 0.01 p01 = 0.05
a/A or A/A (G = 1) p10 = 0.04 p11 = 0.10
• Is there additive and/or multiplicative interaction?
• Is the interaction positive or negative?
• Suppose we have 100 doses of a drug (E )

and the outcome means ‘cured’.
• There are 100 patients in the G = 0 group

and 100 in the G = 1 group.
• Who should we treat?

11 / 71



Additive versus multiplicative interactions

• In most published epidemiologic studies, interactions are
evaluated and reported on the multiplicative scale.

• Interaction on the additive scale are often not;
perhaps only about 1 in 50 in epidemiology reported.
(Knol et al., 2009)

• Previous example shows that additive interactions are more
interesting from a public health perspective.

• Recommendation: report estimates and confidence intervals
on both scales.
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Case-control designs

• The main reasons why there is so much focus on
multiplicative interactions have to do with

• the fact that the multiplicative scale sometimes naturally
corresponds to the biological mechanisms;
(Siemiatycki and Thomas, 1981)

• confounding control (later);
• case-control designs.

• Disease risks cannot be estimated from case-control designs.
• Odds ratios can, and approximate relative risks

when disease risks are small.
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Multiplicative interaction in case-control designs

• Consider the following numbers of cases/controls
in a case-control study.

Unexposed (E = 0) Exposed (E = 1)
a/a (G = 0) 10/52 50/50

a/A or A/A (G = 1) 40/51 100/47
• Is there (approximately) multiplicative interaction?

R11 ≈ 100× 52
47× 10 = 11

R10 ≈ 40× 52
51× 10 = 4

R01 ≈ 50× 52
50× 10 = 5

• Is there (approximately) additive interaction?
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Additive interaction in case-control designs

• Upon dividing
p11 + p00 − p01 − p10

by p00, we obtain

R11 + 1− R01 − R10,

which is the Relative Excess Risk due to Interaction (RERI).
(Rothman, 1986)

• In the previous example, we conclude that

RERI = 11 + 1− 4− 5 > 0,

suggesting a positive additive interaction.
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Example: breast cancer, alcohol and XRC3-T241M

• Odds ratios for breast cancer:

No Alcohol Alcohol
T/T or T/M 1 1.12 (0.81 to 1.54)

M/M 1.21 (0.70 to 2.09) 2.09 (1.16 to 3.78)
(Figueiredo et al., 2004)

• There is positive interaction on the multiplicative scale:

2.09
1.21× 1.12 = 1.54 > 1

• There is positive interaction on the additive scale:

RERI ≈ 2.09− 1.21− 1.12 + 1 = 0.76 > 0
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Part II. Causal interaction
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Interaction

• The interest in gene-environment or gene-gene interactions
is typically motivated by a desire
to understand better the disease etiology.

• Previous interaction measures have shortcomings in such case.

• They are based on contrasts between groups
that may not be entirely comparable,
due to confounding.

18 / 71



Controlling for confounding

• To understand how to best control for confounding,
note that different causal questions can be phrased
that all capture the notion of interaction.

• Is the effect of smoking on lung cancer different for people
with different variants of rs8034191?

• To investigate this question,
one must control for common causes of smoking and lung
cancer.
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Controlling for confounding

• Is the effect of SNP rs8034191 different for smokers versus
non-smokers?

• To investigate this question,
one must control for common causes of the SNP and lung
cancer.

• This may be easier to attain because of random inheritance
(although population admixture; see later).
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Controlling for confounding

• Does smoking modify the effect of SNP rs8034191 on lung
cancer?

• Here, we consider the effect of the exposure and genotype
jointly.

• This requires control for confounding of both associations.
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Controlling for confounding

• Are there individuals who would develop lung cancer if they,
at the same time, smoke and carry the risk allele on SNP
rs8034191, but not if they have only one of these exposures?

• This is a question about causal mechanism, synergism.
• We will address this later.
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Additive interaction

• Additive interaction can be estimated as the term β in the
linear regression model

E (Y |G ,E ) = γ0 + γ1G + γ2E + βGE

• Indeed, one can verify that

β = E (Y |G = 1,E = 1)︸ ︷︷ ︸
γ0+γ1+γ2+β

+E (Y |G = 0,E = 0)︸ ︷︷ ︸
γ0

−E (Y |G = 0,E = 1)︸ ︷︷ ︸
γ0+γ2

−E (Y |G = 0,E = 1)︸ ︷︷ ︸
γ0+γ1
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Additive interaction

• This easily enables control for confounding
by including measured confounders X
(e.g. substructure-informative loci, principal components, ...)
in the model

E (Y |G ,E ,X ) = γ0 + γ1G + γ2E + γxX + βGE

• One can now verify that

β = E (Y |G = 1,E = 1,X ) + E (Y |G = 0,E = 0,X )

−E (Y |G = 0,E = 1,X )− E (Y |G = 1,E = 0,X )

• This can also be used for non-dichotomous outcomes,
genotypes or exposures.
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Multiplicative interaction

• Multiplicative interaction can be estimated as the term β
in the loglinear regression model

log E (Y |G ,E ,X ) = γ0 + γ1G + γ2E + γxX + βGE

• Related interactions can be estimated as the term β
in the logistic regression model

logit E (Y |G ,E ,X ) = γ0 + γ1G + γ2E + γxX + βGE

• The latter, unlike the other models, gives valid results
in case-control designs.
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Case-only designs

• Gene and environment are often independent,
when the environmental exposure is not genetically affected.

• If that is the case, then interaction term β in model

logit E (Y |G ,E ,X ) = γ0 + γ1G + γ2E + γxX + βGE

can be estimated more precisely from less information.
• The multiplicative interaction β3 then equals the odds ratio

between G and E in the subgroup of cases (with given X ).
(Yang et al., 1999; Piegorsch et al., 1994; Moerkerke et al., 2013)

• It is thus obtained by fitting the logistic regression model

logit E (G |Y = 1,E ,X ) = α0 + βE + αxX

• To assess multiplicative interaction,
only data for cases are then needed.

• This is referred to as the case-only estimator of interaction.
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Statistical versus mechanistic interaction

• Ultimately, geneticists are interested
in mechanistic interdependencies between genes
or genes and environmental exposures.

• Standard model-based tests for interaction
do not signal such mechanistic interaction processes.

• Tests for sufficient cause interactions have been developed
for this purpose.
(Rothman, 1976; VanderWeele and Robins, 2007)

• These aim to signal the presence of individuals for whom the
outcome (e.g., disease) would occur if both exposures were
‘present’, but not if only one of the two were present.
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Sufficient causes

• How can we formalize this notion?
• Rothman (1976) defined a ‘sufficient cause’

as minimal set of events, conditions or characteristics
that gave rise to a process that inevitably produced disease.
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Example

example

• Suppose we have 3 genes of interest: G1,G2,G3.
• Let Yg1g2g3 be the counterfactual disease status

(1: disease; 0: no disease) that would be observed
if genotype (g1, g2, g3) were present.

• Suppose the following sufficient cause representation holds:
(VanderWeele and Robins, 2007)

Yg1g2g3 = B1g1g2
∨

B2g1g3
∨

B3g3

where B1,B2,B3 are background causes.
• Then B1g1g2,B2g1g3 and B3g3 are sufficient causes for

disease.

29 / 71



Example

example

Yg1g2g3 = B1g1g2
∨

B2g1g3
∨

B3g3

• There will be individuals (those with B1 = 1,B2 = B3 = 0)
for whom the disease can only occur
if both genotypes g1 = 1 and g2 = 1 are ‘present’.

• We then say that sufficient cause interaction is present
between G1 and G2 because both genotypes are present in the
same sufficient cause.
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Subtleties

Generally, more than one set of sufficient causes will replicate a set
of potential outcomes.

example

• Suppose the outcome is death and we are interested in the
effects of 2 life-threatening ‘killer’ genes G1 and G2.

• Suppose that Yg1g2 = 1 if and only if G1 = 1 or G2 = 1.
• Then both sufficient cause representations

Yg1g2 = B1g1
∨

B2g2

and
Yg1g2 = B1g1g2

∨
B2g1g2

∨
B3g1g2

are compatible with this.
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Sufficient cause interaction

• We will say that there is a sufficient cause interaction between
G1 and G2 if in every sufficient cause representation for Y ,
there is a sufficient cause in which G1 and G2 are both present.

• If there is a sufficient cause interaction there must be a causal
mechanism which requires both G1 and G2 to operate.

• The previous example suggests that no consistent tests for
sufficient cause interaction can be developed.

• By using the relation between sufficient cause interactions and
counterfactual outcomes, empirical tests for sufficient cause
interactions can however be constructed.
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Empirical conditions for sufficient cause interaction

• Define pge|x = E (Y |G = g ,E = e,X = x).
• A sufficient cause interaction is present if

(VanderWeele et al., 2007)

p11|x − p10|x − p01|x > 0 or RERI > 1

• When the additive risk model:

E (Y |G ,E ,X ) = γ0 + γ1G + γ2E + βGE + γxX

holds, where X suffices to control for confounding of the
effect of G and E on Y , then this amounts to

β > γ0
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Empirical conditions for sufficient cause interaction

• The previous result can be strengthened under monotonicity.
• Monotonicity requires the effect always operates

in the same direction for all individuals.
• This might be plausible sometimes (e.g. the effect of smoking

on lung cancer), but not always (e.g. alcohol on stroke).
• When both exposures have monotonic effects on the outcome,

a sufficient cause interaction is present if
(VanderWeele et al., 2007)

p11|x − p10|x − p01|x + p00|x > 0 or RERI > 0

which amounts to
β > 0
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Example: breast cancer

• Odds ratios for breast cancer:

No Alcohol Alcohol
T/T or T/M 1 1.12 (0.81 to 1.54)

M/M 1.21 (0.70 to 2.09) 2.09 (1.16 to 3.78)
(Figueiredo et al., 2004)

• Here

RERI ≈ 2.09− 1.21− 1.12 + 1.00 = 0.76 > 0

• Ignoring sampling variability,
this suggests evidence for sufficient cause interaction with the
assumption that both alcohol and the M/M polymorphism
have monotonic effects on the outcome.
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Example: diarrheal disease

• Case-control study in Northwestern Ecuador (2003-2008)
indicates that Giardia, rotavirus and E. coli/Shigella, are all
associated with increased risk of diarrheal disease.
(Bhavnani et al., 2012)

• Giardia rotavirus: RERI = 10.7− 2.6− 1.1 + 1 = 7.9
(95% CI: 3.1 to 18.9)

• E. coli/Shigella rotavirus: RERI = 13.2− 2.6− 1.6 + 1 = 9.9
(95% CI: 2.6 to 28.4)

• E. coli/Shigella giardia: RERI = 3.0− 1.1− 1.6 + 1 = 1.2
(95% CI: -1.4, 3.1)

• For Giardia rotavirus and for E. coli/Shigella and rotavirus,
there is strong evidence of mechanistic interaction
even without making any monotonicity assumptions.
(VanderWeele, 2012)
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Epistasis

• The original notion of epistasis is similar.
(Bateson, 1909; Cordell, 2002; VanderWeele, 2010)

• For two genetic factors G1 and G2,
we say that G1 is epistatic to G2 if it masks the effect of G2.

• That is, there are individuals who can only get disease
if both ‘exposures’ are ‘present’.

• VanderWeele (2010) refers to this as compositional epistasis.
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Empirical conditions for compositional epistasis

• Compositional epistasis is present if
(VanderWeele et al., 2010)

p11|x − p10|x − p01|x − p00|x > 0 or RERI > 2

• Under the additive risk model:

E (Y |G ,E ,X ) = γ0 + γ1G + γ2E + βGE + γxX

this amounts to
β > 2γ0

38 / 71



Empirical conditions for compositional epistasis

• When one of the exposures is monotonic, this can be
strengthened to

p11|x − p10|x − p01|x > 0 or RERI > 1

which amounts to
β > γ0

• When both exposures are monotonic, this can be strengthened
to

p11|x − p10|x − p01|x + p00|x > 0 or RERI > 0

which amounts to
β > 0
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Example: esophageal cancer

• Yang et al. (2005) examine interaction in the effects of Arg
variants on ADH2 (chr 4) and Glu/Glu versus Glu/Lys on
ALDH2 (chr 12) on esophageal cancer.

• Based on the odds ratios (OR), we find
RERI = OR11 - OR10 - OR01 + 1
= 7.20− 1.40− 3.52 + 1 = 3.28 (95% CI: 0.4 to 6.16)

• The estimate RERI = 3.28 > 2 would suggest compositional
epistasis without any assumptions about monotonicity.

• The confidence interval implies compositional epistasis only if
both variants had monotonic effects on esophageal cancer.
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Part III. Robustness
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Model misspecification

• Misspecification of the main effects may seriously bias
standard interaction estimates.
(Greenland, 1993)

• This can form a major concern,
especially in genome-wide screening
and because of the possibility of high-dimensional
confounders.
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Model misspecification

• The concern about misspecification gets exacerbated
when there are strong correlations between covariates.

• Regression methods are then prone to extrapolate.
• Important confounders may be dismissed

in the model building process.
• Standard model building procedures may

prioritize interactions over other higher order terms,
thus leading to an inflation of the Type I error rate.

• The concern about model misspecification
is especially pertinent when studying additive interaction
or sufficient cause interaction.
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Concerns about tests for additive interaction

• Conditions like

p11|x − p10|x − p01|x > 0

could alternatively be tested on the basis of contrasts between
predicted values pge|x from logistic regression models.

• However, such models are highly non-additive.
• By thus imposing non-additivity under parsimonious, but

misspecified logistic regression models, one would induce a
bias towards non-additivity on the risk difference scale,
leading to an inflation of the Type I error.
(Vansteelandt, VanderWeele and Robins, 2012)

• In addition,
the contrast p11|x − p10|x − p01|x would then depend on x ,
thus requiring separate tests at each confounder level.
(Skrondal, 2003)
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Robust assessment of interactions

question
Can we estimate/test for statistical interaction
in a way that is robust against model misspecification?

We will consider 2 approaches:
• marginal structural models;

(VanderWeele, Vansteelandt and Robins, 2010; Vansteelandt, VanderWeele and Robins, 2012)

• semi-parametric interaction models;
(Vansteelandt et al., 2008)
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Marginal structural additive risk models

• One strategy is to use marginal structural additive risk models

pge ≡ P(Yge = 1) = β0 + β1g + β2e + β3ge

• These models are saturated (when G and E are dichotomous)
and thus guaranteed not to be misspecified:

p00 = β0

p01 = β0 + β2

p10 = β0 + β1

p11 = β0 + β1 + β2 + β3

46 / 71



Empirical conditions for marginal synergism

• The condition
p11 − p10 − p01 > 0

amounts to
β3 > β0;

it entails the presence of a sufficient cause interaction between
G and E .

• When the effects of G and E are monotonic, the condition

p11 − p10 − p01 + p00 > 0

amounts to
β3 > 0;

it entails the presence of a sufficient cause interaction between
G and E .
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Fitting marginal structural additive risk models

• The marginal structural additive risk model
P(Yge = 1) = β0 + β1g + β2e + β3ge

cannot be directly fitted
because the counterfactuals Yge are not all observed.

• It can instead be fitted via weighted least squares regression
of the corresponding additive risk model

P(Y = 1|G ,E ) = β0 + β1G + β2E + β3GE
with weights

P(G)

P(G |X )

P(E |G)

P(E |G ,X )

whose components can be obtained via logistic regression.
(VanderWeele, Vansteelandt and Robins, 2010)

• Related approach for the RERI is based on marginal structural
linear odds models.
(VanderWeele and Vansteelandt, 2011)
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Application

• We apply the methods described above to data from a
cross-sectional study of 11 062 individuals in Bangladesh.

• The study concerns interactions between the effects of
exposure to high levels of arsenic in drinking water
(> 100µg/L in well water) and current or past tobacco
smoking on premalignant skin lesions.

• These were defined as the presence of melanosis or
hyperkeratosis, which are precursor lesions of basal and
squamous cell skin cancers in an arsenic-exposed population.
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Weights

• Weights are constructed using logistic regressions of high
levels of arsenic exposure (G) and smoking (E ).

• Confounding variables (X ) are sex, age, education, body mass
index, land and TV ownership (markers of socioeconomic
status in Bangladesh), fertilizer use, and pesticide use.

1 We thus fit a logistic model for P(G) and P(G |X ).
• Subjects with G = 1 receive weight

w1 =
P(G = 1)

P(G = 1|X )

• Subjects with G = 0 receive weight

w1 =
1− P(G = 1)

1− P(G = 1|X )
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Fitting marginal structural additive risk models

2 Next, we fit a logistic model for P(E |G) and P(E |G ,X ).
• Subjects with E = 1 receive weight

w2 =
P(E = 1|G)

P(E = 1|G ,X )

• Subjects with E = 0 receive weight

w2 =
1− P(E = 1|G)

1− P(E = 1|G ,X )

3 We then constructed a weight for each subject as

w1w2

Following suggestions from Cole and Hernán (2008),
weights are truncated at the 1st and 99th percentiles.
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Fitting marginal structural additive risk models

4 Next we fit the additive risk model

P(Y = 1|G ,E ) = β0 + β1G + β2E + β3GE

using standard linear regression methods,
giving each subject the constructed weight.

• Standard error for the estimate requires a sandwich estimator,
e.g. via GEE-routines.

• Standard error outputed by such routines are conservative.
• Estimating an ‘unbiased’ standard error for the estimate is

more tricky, as this should include the variability in the
weights. One option is to use the bootstrap.
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Results

• The estimates (reported in %) from the marginal structural
model are

β0 = 4.72 (95% confidence interval: 3.40, 6.04)

β1 = 3.03 (95% confidence interval: 0.66, 5.40)

β2 = 1.72 (95% confidence interval: − 0.13, 3.57)

β3 = 3.64 (95% confidence interval: 0.13, 7.14)

• Thus, under the assumption of monotonicity - which is
biologically plausible - and of no unmeasured confounding,
the estimate suggests a sufficient cause interaction.

• It confirms the presence of individuals who would have a skin
lesion if they were exposed to high levels of well arsenic and
tobacco smoking, but would not have had a skin lesion if only
one of these 2 exposures were present.
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Results

• The estimates (reported in %) from the marginal structural
model are

β0 = 4.72 (95% confidence interval: 3.40, 6.04)

β1 = 3.03 (95% confidence interval: 0.66, 5.40)

β2 = 1.72 (95% confidence interval: − 0.13, 3.57)

β3 = 3.64 (95% confidence interval: 0.13, 7.14)

• An estimate of the lower bound on the prevalence of such
sufficient cause interactions is 3.64%.

• But the confidence interval is quite wide: 0.13, 7.14.
• Because β3 < β0, it is not possible to draw conclusions about

sufficient cause interactions without the monotonicity
assumption.
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Semi-parametric interaction models

• An alternative strategy is to estimate statistical interactions
without modeling main effects

E (Y |G ,E ,X ) = βGE + ???

• We call this a semi-parametric interaction model.
(Vansteelandt et al., 2008; Vansteelandt, VanderWeele and Robins, 2012)

• Smoothing methods would not work well
when X is high-dimensional.

• Progress by using information on the joint distribution
of the exposures conditional on the extraneous factors.
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A priori knowledge on the exposure distribution

Such information is sometimes available.
example: randomized clinical trial
experiment with G and E both randomly assigned.

example: gene-gene interaction in family-based genetic association
studies
genotype distribution is known, conditional on parental genotypes,
by Mendel’s law of segregation.
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Estimation

• Let us start from a traditional regression model

E (Y |G ,E ,X ) = βGE + γ2E + γ1G + γxX + γ0

• Then we propose estimating β as the solution to an
estimating equation of the form

n∑
i=1

d(Gi ,Ei ,Xi )εi (β, γ) = 0

with d(G ,E ,X ) a function of (G ,E ,X ) satisfying

E{d(G ,E ,X )|G ,X} = E{d(G ,E ,X )|E ,X} = 0

and γ substituted with e.g. the OLS estimator.
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Why this constraint?

• The constraint

E{d(G ,E ,X )|G ,X} = E{d(G ,E ,X )|E ,X} = 0

ensures that misspecification of the main effects does not
harmfully affect the estimator, which is the solution to

0 =
n∑

i=1
d(Gi ,Ei ,Xi )(Yi − βGiEi − γ2Ei

−γ1Gi − γxXi − γ0)

• How do we find a function d(G ,E ,X ) satisfying

E{d(G ,E ,X )|G ,X} = E{d(G ,E ,X )|E ,X} = 0?
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Conditionally independent exposures

• Suppose first that both exposures are known to be
conditionally independent:

G⊥⊥E |X

example: gene-environment interaction
gene and environment are independent when the environmental
exposure is not genetically affected.

example: gene-gene interaction
unlinked genes can be assumed independent
(conditional on parental mating types).

See Vansteelandt et al. (2008) for conditionally dependent
exposures.
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Conditionally independent exposures

• Then the constraint is met for choices of the form

d(Gi ,Ei ,Xi ) = d(Xi )∆(Gi |Xi )∆(Ei |Xi )

with d(Xi ) arbitrary and

∆(Gi |Xi )∆(Ei |Xi ) = {Gi − E (Gi |Xi )} {Ei − E (Ei |Xi )}

• The closed-form estimator β̂ for β:∑n
i=1 ∆(Gi |Xi )∆(Ei |Xi )(Yi − γ2Ei − γ1Gi − γxXi − γ0)∑n

i=1 ∆(Gi |Xi )∆(Ei |Xi )GiEi

is semi-parametric efficient.
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Robustness

• When the exposure distribution is unknown, we specify a
model and fit it using maximum likelihood estimation.

• Then our approach delivers multiply robust estimators.
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Test and standard error

• When the models for E (Gi |Xi ) and E (Ei |Xi ) are correct,
a conservative test of the GxE interaction null hypothesis
amounts to a one-sample t-test that

∆(Gi |Xi )∆(Ei |Xi )(Yi − γ2Ei − γ1Gi − γxXi − γ0)

has mean zero.
• A conservative standard error of β̂

is given by 1 over root n times the standard deviation of

∆(Gi |Xi )∆(Ei |Xi )(Yi − γ2Ei − γ1Gi − γxXi − γ0)

n−1
∑n

i=1 ∆(Gi |Xi )∆(Ei |Xi )GiEi

• Vansteelandt et al. (2008) give more exact results.
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Boston Early-Onset COPD Study

• 128 extended pedigrees
from the Boston Early-Onset COPD Study.
(Silverman et al., 1998)

• We test 6 SNPs located in the SERPINE2 gene found to be
in a linkage peak for COPD.
(DeMeo et al., 2006)

• Interest in interactions of these SNPs X with pack years of
smoking Z on post-bronchodilator measurements of forced
expiratory volume in 1 second (FEV1 in liters) Y .

• Note the change of notation!
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The target genetic effect

Trait Y
Offspring

genotype X
Offspring

trait Y
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Mendelian transmission

Offspring
trait Y

Offspring
genotype X

Parental
genotype S

Mendelian
transmission

65 / 71



Population admixture

Offspring
trait Y

Offspring
genotype X

Parental
genotype S

Unmeasured
confounding

U

Population
admixture
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Stratifying on parental mating types removes bias

Offspring
trait Y

Offspring
genotype X

Parental
genotype S

Z
Environment,
Unmeasured
confounding

U
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Model

• The QBAT-I test essentially follows the previous principle.
(Vansteelandt et al., 2008)

• It uses estimating equations of the form

∑
i ,j

(
1
Zij

)
{Xij − E (Xij |Zij , Si )︸ ︷︷ ︸

E(Xij |Si )

}(Yij − βXij − γXijZij) = 0.
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Results of Boston Early-Onset COPD Study

• Each family was ascertained from a single proband satisfying
FEV1 < 40% of predicted.

• SGxE -p extends this idea to adopt the ascertainment condition.
(Fardo et al., 2012)

Pack Years Ever Smoker

Markers SGxE -p QBAT-I-p SGxE -p QBAT-I-p
ser37 0.118 0.126 0.152 0.163
ser8 0.662 0.243 0.951 0.958
ser51 0.047 0.082 0.455 0.816
ser55 0.209 0.244 0.703 0.774
ser50 0.213 0.271 0.745 0.825
ser6 0.232 0.249 0.870 0.941

Approach stays valid when parental genotypes are incomplete
and S is replaced by their sufficient statistic (Rabinowitz and Laird, 2000).
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