SEM: historical corner
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Structural Equation Modeling (SEM)

e  Structural Equation Models (SEM) are complex models allowing us to study real world
complexity by taking into account a whole number of causal relationships among latent
concepts (i.e. the Latent Variables, LVs), each measured by several observed indicators
usually defined as Manifest Variables (MVs).

*  Factor analysis, path analysis and regression are special cases of SEM.

* SEM is a largely confirmatory, rather than exploratory, technique. It is used more to
determine whether a model is valid than to find a suitable model. But some exploratory
elements are allowed

Key concepts:

Latent variables (unobservable by a direct way): abstract psychological variables like
«intelligence», «attitude toward the brand», «satisfaction», «social status», «ability», «trust».

Manifest variables are used to measure latent concepts and they contain sizable
measurement errors to be taken into account: multiple measures are allowed to be associated

with a single construct.

Measurement is recognized as difficult and error-prone: the measurement error is explicitly
modeled seeking to derive unbiased estimates for the relationships between latent constructs.
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Structural Equation Modeling (SEM)

Several fields played a role in developing Structural Equation Models :

 From Psychology, comes the belief that the measurement of a valid
construct cannot rely on a single measure.

e From Economics comes the conviction that strong theoretical
specification is necessary for the estimation of parameters.

 From Sociology comes the notion of ordering theoretical variables
and decomposing types of effects.
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Sewall Wright and Path Analysis

Sewall Wright 21 December 1889 -3 Mars 1988) %
American Geneticist, son of the economist Philip Wright '@;

Path Analysis has been developed in the 20s by S. Wright S
to investigate genetic problems and to help his father in |
economic studies.

Path Analysis aims to study cause-effect relations among several
variables by looking to the correlation matrix among them.

The main newness is the introduction of a new tool to
investigate cause-effect relations: the path diagram
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Factor Analysis and the idea of Latent Variable

Charles Edward Spearman (10 september 1863 - 17 September 1945)
English psychologist

C. Spearman proposed Factor Analysis (FA) at the begin of
the “900s to measure intelligence in a “objective” way.

The main idea is that intelligence is measured by several variables, but the
correlation observed among the variables should be explained by a unique
underlying “factor” .

The most important input from Factor Analysis is the
introduction of the concept of “factor”, in other words the
concept of Latent Variable

The PLS approach to CB-LVPM — Antwerp, Belgium, 29th April 2016 G. Russolillo —slide 5



Thurstone and Multiple Factor Analysis

Spearman approach has been modified in the following 40 years in
order to consider more than one factor as ‘“cause” of observed
correlation among several set of manifest variables

LLouis Thurstone (29 May 1887-30 September 1955)
Psychometricien

the father of the Multiple Factor Analysis
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Causal models rediscovered

Herbert Stmon (une, 15 1916 - February 9, 2001)
Economist — Nobel Prize for economic in 1978

In 1954 presents a paper proving that “under certain
assumptions correlation is an index of causality”

Hubert M. Blalock 23 Augut 1926 — 8 Febrary 1991)
Sociologist

In 1964 published the book “Causal Inference in Nonexperimental
Research”, in which he defines methods able to make causal inference
starting from the observed covariance matrix. He faces the problem of
assessing relations among variables by means of the inferential method.

They developed the SIMON-BLALOCK techinque
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Path analysis and Causal models

Otis D. Duncan
(December, 2 1921- November, 16 2004)

He was one of the leading sociologists in the world. He introduces the Path
Analysis of Wright's in Sociology.

In the mid-60's comes to the conclusion that there is no difference between the
Path Analysis of Wright and the Simon-Blalock model.

With the economist (and econometricien) Arthur Goldberger he comes to the
conclusion that there is no difference between what was known in sociology
as Path Analysis and simultaneous equations models commonly used in
econometrics.

Along with Goldberger he organizes a conference in 1970 in Madison (USA)
where he invited Karl Joreskog.
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Covariance Structure Analysis and K. Joreskog

Karl Joreskog

Statistician, Professor Emeritus at Uppsala University, Sweden

In the late 50s, he started working with Herman Wold.
He discussed a thesis on Factor Analysis.

In the second half of the 60s, he started collaborating with O.D. Duncan
and A. Goldberger. This collaboration represents a meeting between Factor
Analysis (and the concept of latent variable) and Path Analysis (i.e. the idea
behind causal models).

In 1970, at a conference organized by Duncan and Goldberger,
Joreskog presented the Covariance Structure Analysis (CSA) for
estimating a linear structural equation system, later known as LISREL
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Soft Modeling and H. Wold

Herman Wold (December 25, 1908 — February 16, 1992)
Econometrician and Statistician

In the 50" s Thurston meets Herman Wold meets Louis Thurstone. They
decide to co-organize “the Upspsala Symposium on Psycological Factor
Analysis” . Since then, H. Wold started working on Latent Variables models.

In 1975, H. Wold extended the basic principles of an iterative algorithm
aimed to the estimation of the PCs (NIPALS) to a more general procedure for
the estimation of relations among several blocks of variables linked by a
network of relations specified by a path diagram.

The PLS Path Modeling was proposed to estimate Structural Equation
Models (SEM) parameters, as a Soft Modeling alternative to Joreskog's
Covariance Structure Analysis
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Two families of methods

4 B
) The aim is to reproduce the sample covariance
Covariance-based : : :
matrix of the manifest variables by means of the
Methods
model parameters:

* the implied covariance matrix of the manifest
variables is a function of the model parameters
* it is a confirmatory approach aimed at

kvalidating a model (theory building)
J

SEM

4 A

The aim is to provide an estimate of the latent
variable scores in such a way that they are the most
correlated with one another (according to path
v diagram structure) and the most representative of
Component-based * each corresponding block of manifest variables.
Methods e latent variable score estimation plays a main role
* it is more an exploratory approach, than a
confirmatory one (operational model strategy)

\ J
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From Path Analysis to SEM
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SEM: drawing conventions

@ or @ Latent Variables (LV)

X or X Manifest Variables (VM)

/\ Unidirectional Path

(cause-effect)

or ‘/\ Bidirectional Path

(correlation)

v

or

A
v

. Feedback relation or
reciprocal causation

(&) o () or e Errors

A
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Structural Equation models: notation

(Greek characters are used to refer to Latent Variables:

3

S

!

J=# exogenous Latent
Variables (LV)

-/

M=+# endogenous Latent
Variables (LV)

Latin characters refer to Manifest Variables

-/

P=# exogenous MV

Y, =

The PLS approach to CB-LVPM — Antwerp, Belgium, 29th April 2016

Vi

4

Q= # endogenous MV

G. Russolillo — slide 14



“Drawing” a regression model

The multiple regression model (on centred variables) :

The error is an :
' Unobserved / Latent variable |

___________________________________________________________

________________________________________

Quality and Cost | _
" are Observed /
' Manifest Variables

—————————————————————————————————————————————————————————————————————————————————

Example: The Value for a brand in terms of Quality and Cost
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Path Models with Manifest Variables

The multiple regression model can be generalized to paths where
endogenous variables are on their turn causative of others endogenous

variables.
Y1 = Y1 X1+ G @ ’@
Yo =By y1 + G, Vi1 By

X, Yi Yo

| ro] T | ey Rmo| OO | s
- F‘[ 0 } P 0] g

# enao # endo # exo # enao # en_do # en_do

y=Ix+By+(
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Path Models with Manifest Variables

Y1 = Va1 Xq F Y2 Xo + G ,@ <

_ X4 Y11 /
2= P21 y1 + G < > v Py
Y12

y=Ix+By+( ® y=(I—B)_1(Fx+§’)
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Analysing covariance structures of Path models

Population Covariance matrix

S W L |
=

X Y11 8
< >y1 Y D)
Y

| X _
X, - Y yy

Assuming that:
1) the MVs are centered

11) Two structural errors do not covariate

iv) The covariance between structural error and exogenous MVs is equal to zero

We can write the covariance matrix among the MVs in terms of model parameters
(implied covariance matrix):

C=3(Q)=%(T\B,¥)

Path Coefficients .ﬂ '\ Structural Error Covariance
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Path model implied covariance matrix

2
XX
2= 5y Population Covariance matrix
X yy
C=S5S=2
S)CX
S = Empirical covariance matrix
Sy Sy
_ ZXX _
(I-B)'Tx, (I—B) (T=, I"+¥)(I-B)

“Implled” covariance matrix
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Confirmatory Single Factor Model

Common
X;=hj; § 40,
Factor

X, = )\21 El + 62 Loading
X3 =My § + 04

Factor

Unique
Factor
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Multiple Confirmatory Factor Model

X =My § 40y,
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Analysing covariance structures in CF models

bddb b &
¢

1) the MVs, the LV and the errors are centered

Assuming that:

11) Measurement errors and LVs do not covariate

We can write the covariance matrix among the MVs in terms of model parameters
(implied covariance matrix):

C=3(Q)=3(A,0,0
el

Loadings LV Covariance Measurement Error Covariance
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Analysing covariance structures in CF models

Confirmative factor model :
x=AC+0

The covariance matrix of the MVs can be rewritten in terms of model
parameters:

Z(Q)=E(xx") = E{(Af +0)(AE+ 5)'} =

=E[(AE+6)(EN +67)|=
= AE(EE)A + A E(ES")+E(OE)A” + E(06")

let igiizz ‘E Z(Q):A(DA'—I-@ }
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Path model with latent variables

Loadings

Path
Coefficients

Loadings <
Mo
Ce)—>| ¥2 )K \Q;D Structural Model or inner model

Measurement Model or outer model
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The measurement (outer) model

For the exogenous MVs G&— ";\X Ny
\ S B)— X2 }\)(21 &1
= AX 3
X4 11 &+ 0, © % /
X, =My & + 0,
X3 = A3 §; + 03
A1 A 0,
X = x2 Ax: l; g:[él] 6: 52
X, A i 0, |
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The measurement (outer) model

For the exogenous MVs (A reflective scheme must hold)
x=AE+8

Vector of the measurement
Vector of the errors associated to the
exogenous MVs exogenous MVs
Vector of the

RECTANGULAR matrix with the exogenous LVs
loadings linking each exogenous MV to
the corresponding exogenous LV
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The measurement (outer) model

For the endogenous MVs
y=A"n+¢

y, = A", + &,

y, = AN, + &,

y, =A"n,+¢,

Vs = AN, + €

Yo =AM, + &,

y7 — A)’nnz + 87

Y1
Y2
Y3
Y4
Vs
Ve
Y7

E—
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The structural (inner) model

N, =Y & +
N =Y & + Py + G,
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The structural (inner) model

Vector of the errors
Vector of the / associated to the

/ endogenous LVs \ endogenous LVs

3\
1
—
v
_I_
ve
-
_I_
U™

Vector of the
exogenous LVs

Path-coefficients Matrix: it is a Path-coefficients Matrix: it is a SQUARED
RECTANGULAR matrix with the matrix with the path coefficients of the

path coefficients of the exogenous endogenous LVs. On the diagonal there are
LVs. only zeros
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The Structural Equation Model

@’_"v\

o &) @ e o
@_' \
®—> /
o—z¥ @

x=AC+0
y=AnN+e

Measurement Models

Structural Model

\
IM=TE+Bn+¢ & n=(1-B) (TE+{) |
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Model assumptions

e =z N
i =hoto

()
®—>

y=An+e
n=(1-B) (Te+e)

@ \

Assuming that:

1) the MVs, the LV and the errors (both in structural and measurement models) are
centered

i1) Two errors of different type (structural, exogenous measurement and
endogenous measurement) do not covariate

111) Measurement errors and LVs do not covariate

iv) The covariance between structural error and exogenous LVs is equal to zero
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Model assumptions

4 X=Ax§+5\
y:Ayn+£
=(1-B)(TE+0)

\

Hypotheses on
Expectations
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Hypotheses on
Correlations
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Analysing the covariance

& Xl _ Population Covariance matrix

«—_®
o—xF

X
>

XX

2. X

yXx Yy

@—»

We can write the covariance matrix among the MVs in terms of

model parameters (implied covariance matrix)

I[LBA.A.0¥.06,0,)

Path Coefficients Loadings Exog. LV Structural Measurement
Covariance Error Error
Covariance Covariance
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Implied Covariance matrix 2(€2)

‘ Covariance matrix of the population

-1 2 A -1 , -1/ |
A (I-B) ' To/AY EAy[(I—B) (TOI" +¥)(1-B) }Aﬁ@g

b Covariance matrix of the population implied by the model
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Analysing the covariance

Zxx
2= y Population Covariance matrix
X yy
C=85S=2X2
_ Sxx
S = Empirical covariance matrix
_S yX Syy_

The PLS approach to CB-LVPM — Antwerp, Belgium, 29th April 2016 G. Russolillo —slide 35



To summarize

D D &
2w

y 3
2 /Path Analysis with ‘ 4\} P & & ‘ ‘
Manifest Variables Confirmatory Factor Model
®—’m\

GH— X
G—> X3

@_. O Path Analysis with Latent Variables
(Structural Equation Model)
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Discrepancy function

Estimation minimizes some discrepancy function between the
implied covariance matrix and the observed one.

F=f(S-2(§2))

(0=~ L en A e a) o,
: y
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Main discrepancy function for estimation

Assumptions:

—> data are multinormal

- S follows a Wishart distribution
—> Both S and C are positive-definite

Maximum Likelihood

LFML - log|C|+r(SC™) - log|$| - (P+0) }

Properties of the ML estimators:
- Asymptotically unbiased

- Consistent

- Asymptotically efficient

- The distribution of the ML estimators approximates a normal
distribution as sample size increases
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Alternative discrepancy functions

Unweighted Least Squares

F o= %tr[(s -C)z}

Generalised Least Squares

F. = %n/[w-l (- c)z}

Asymptotically Distribution Free
Fyprims = (§ _E)T W (§ - c)
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Model identification
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Model identifiability and Degrees of freedom

Identifiability

A model is 1dentifiable if its parameters are uniquely determined.

Degrees of freedom (DF)

DF = # equations (knowns) - # parameters to be estimated (unknowns)

Model identification condition:
DF=0

This is a necessary (but not sufficient) condition
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Some consideration on model identification

Perfect Identification:

—> DF ( # equations - # parameters) =0

A perfectly identified model yields a trivially perfect fit, making the
test of fit uninteresting.

Overidentification:

—> DF ( # equations - # parameters) > 0

A model 1s overidentified if there are more knowns than unknowns.
Overidentified models may not fit well and this is their interesting
feature.
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Model identification in SEM

T-rule: A SEM is identified if the covariance matrix may be uniquely
decomposed in function of the model parameters

- if its DF = 0, the number of covariances is larger than the number of
parameters to be estimated: the model is potentially identifiable

DF:_%(P+Q+1)@

# of MVs in the model: /
P = # of exogenous MVs # o.f parameters to be
Q = # of endogenous MVs estimated

%(P +Q)(P+0+1) » Number of unique elements in the = matrix

Necessary (but not sufficient) condition
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Model fit and validation
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Overall model fit measures

Chi-square Test - Global Validation Tests Test Statistic

2
H,: 2=C = Good fit (N=1)F ~ X
H, :2#C

Decision Rule:

The model is accepted if p-value = 0.05 (We cannot reject the hypothesis Hy)
or if Chi-square/DF < 2 (or other thresholds such as 3 or 5)

N.B.: For a fixed level of differences in covariance matrices,
the estimate of the Chi-square increases with N

The power (i.e. the probability of rejecting a false H,) depends on the
sample size. If the sample size is important, this test may lead to
reject the model even if the data fit well the model!

’ We cannot use this test to compare model estimated on different sample size
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Indices based on a baseline model

Model Comparison

The SATURATED Model:

This model contains as many parameter estimates as there are available degrees
of freedom or inputs into the analysis. Therefore, this model shows 0 degrees of
freedom. [This 1s the least restricted model possible]

The INDEPENDENCE Model:

This model contains estimates of the variance of the observed variables only. In
other words, it assumes all relationships between the observed variables are zero
(uncorrelated), no theoretical relationships. Therefore, this model shows the

maximum number of degrees of freedom. [This is the most restrictive model
possible and ANY TEST SHALL ALWAYS LEAD TO ITS REJECTION]
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Independence vs Saturated model

INDEPENDENCE > SATURATED
Model: Model:
FIT = min FIT = max
DF = max DF =0
N_PAR = min N_PAR = max
N_CONSTR = max N CONSTR = min
CHI2 = max CHI2 =0
P-value = min P-value = max
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Indices based on a baseline model

Goodness-of-Fit Index (GFI)

This index was initially devised by Joreskog and Sorbom (1984) for ML
and ULS estimation. It has then been generalised to other estimation

criteria.
4 )
GFI =1-——

: )

Fit function that would results if all parameters were zero
(fit function of the INDEPENDENCE Model)

’ If a model is able to explain any true covariance between the
observed variables, then F/F, would be 0 = GFI=1

[ The model 1s accepted if GFI 1s at least 0.9 }
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PLS-Path Modeling
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PLS Path Modeling: notations

* P manifest variables (MVs )observed on » units

" x,, generic MV

*  latent variables (LVs)

4 &, generic LV

* Q blocks composed by each LV and the corresponding MVs
Q

» in each g-th block P, manifest variables x,_, with qu =P
q=1

rq°

N.B. Greek characters are used to refer to Latent Variables

Latin characters refer to Manifest Variables
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PLS Path Modeling: notation

Path
oD X1 Coefficients
ok |8 | s & Sl o
X
x31/ \ / /' 23

&3 X33le (83

o
E—> Xy, A, / \ X43 e a3 External

X5 |« (&) Weights
@

>\22 Inner or Structural model

Outer or Measurement model
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PLS Path Model Equations: inner model

The structural model describes the
relations among the latent variables

4 r )
E.=>B,.5 +&,.
N /=1 J

where:
- B, «1s the path-coefficient linking the j-#4 LV to the g *-th endogenous LV
- J is the number of the explanatory LVs impacting on ¢
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PLS Path Model Equations: inner model

The measurement model describes the
relations among the manifest variables Latent Construct
and the corresponding latent variable. €,

For each MV i1n the model it can be written as:
L Xpg = )"png T & J
where:

- 1,,1s a loading term linking the g-4 LV to the p-th MV
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Weight relation — Linear composite

In component-based approach a weight relation defines each
latent variable score as a weighted aggregate of its own MVs:

gq :quq
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PLS-PM Algorithm
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PLS-PM approach in 4 steps

1) Computation of the outer weights
Outer weights w, are obtained by means of an iterative algorithm based on alternating LV
estimations in the structural and in the measurement models

2) Computation of the LV scores (composites)

Latent variable scores are obtained as weighted aggregates of their own MVs:

P

56] o< XC]WCI
3) Estimation of the path coefficients

Path coefficients are estimated as regression coefficients according to the structural model

4) Estimation of the loadings

Loadings are estimated as regression coefficients according to the measurement model
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PLS Path Model: the algorithm

The aim of the PLS-PM algorithm 1s to define a system of weights
to be applied at each block of MVs in order to estimate the
corresponding LV, according to the weight relation:

N\

gq o< quq

This goal 1s achieved by means of an iterative algorithm based on
two main steps:

- the outer estimation step
—> Latent Variable proxies = weighted aggregates of MVs

- the 1inner estimation step

—> Latent Variable proxies = weighted aggregates of connected LVs
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A focus on the Outer Estimation

External (Outer) Estimation

Composites = weighted aggregates of manifest variables

tq B Xqu

Mode A (for outwards directed links — reflective — principal factor model):

Wy =(1/n) x, 'z,

These indicators should covary

Several simple OLS regressions

Explained Variance (higher AVE, communality)
Internal Consistency

Stability of results with well-defined blocks

Latent Construct

20 2

Mode B (for inwards directed links — formative — composite LV):
Wq~ (XqTXq)_lquZq

=» These indicators should covary

=>» One multiple OLS regression (multicollinearity?)

=» Structural Predictions (higher R? values for endogenous LVs)
=» Multidimensionality (even partial, by sub-blocks)

=> Might incur in unstable results with ill-defined blocks | X1q || Xoq || Xaq | | Xaq |

Emergent
Construct
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Latent or Emergent Constructs?

Latent
Construct

Emergent
Construct

Xig | [ X2q] [ X3q| [ Xaq
Reflective (or Effects) Indicators Formative (or Causal) Indicators

e.g. Consumer’s attitudes, feelings e.g. Social Status, Perceptions

» Constructs give rise to observed variables » Constructs are combinations of
(unique cause=>» unidimensional) observed variables(multidimensional)

* Aim at accounting for observed * Not designed to account for observed
variances or covariances variables

* These indicators should covary: changes * These indicators need not covary:
in one indicator imply changes in the changes in one indicator do not imply
others. changes in the others.

* Internal consistency is measured *  Measures of internal consistency do not
(es. Cronbach’s alpha) apply.
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A focus on Inner Estimation

Inner Estimation

Latent Variable proxies = weighted aggregates of connected LV

D) =,

1. Centroid scheme: z ,=¢ t +e .t +e.t,  where €= Sign(cor(tq,tq,))

2. Factorial scheme: z,=cor(t,t)*t +cor(t,t)*t +cor(t,t,)*t,

3. Path weighting scheme : 7 = ’)731 Xt + ’}732 Xt,+ cor(t3, 4) Xt,

Where the betas are the regression coeddicients of the model: £, =7, Xt +7,, Xt + o
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The PLS Path Modeling algorithm

MV:s are centered or standardized

ST =X W, [T

IIII )\ - = - \\l \
. Outer

Initial W estimation €,
i
i Inner
| . . estimation
; Reiterate till }
Numerical
Convergence

Mode A: w_ = (1/n)X 'z
! , q_lq , PRI (hoice of weights e_.:
Mode B: w, = (X, X)X, 'z,

- Centroid: correlation signs

—

e - Factorial: correlations
Update weights - Path weighting scheme: multiple regression
w

coefficients or correlations
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PLS-PM Criteria
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Optimization Criteria behind the PLS-PM

Full Mode B PLS-PM

Glang (1988) and Mathes (1993) showed that the stationary equation of a
“full mode B” PLS-PM solves this optimization criterion:

e . T
arg max-< , (X X ) >
gma E ¢, 8lcov(X w X w,

w q L q# qv J
2
N S.t. HquqH =nj
where:
. 1 ifX and X . is connected B square (Factorial scheme)
“" 10  otherwise abolute value  (Centroid scheme)

Hanafi (2007) proved that PLS-PM iterative algorithm is
monotonically convergent to these criteria
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Optimization Criteria behind PLS-PM

Full Mode A PLS-PM

Kramer (2007) showed that “full Mode A” PLS-PM algorithm is not based on a
stationary equation related to the optimization of a twice differentiable function

Full NEW Mode A PLS-PM

In 2007 Kramer showed also that a slightly adjusted PLS-PM iterative
algorithm (in which a normalization constraint i1s put on outer weights rather

than latent variable scores) we obtain a stationary point of the following
optimization problem:

arg max {2 qu'g(COV(quq ’XCI'WCI' ))}

wolf=n Loa

Tenenhaus and Tenenhaus (2011) proved that the modified algorithm
proposed by Kramer 1s monotonically convergent to this criterion.
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Optimization Criteria behind PLS-PM

A general criterion for PLS-PM, in which (New) Mode A and B are mixed, can
be written as follows:

Kargma)u Ecqq.g(cov(quq,Xq,wq,)) — \
Wa Vil
arg max 1 Ecqq.g[cor(quq,Xq,wq.)\/VM(quq)\/VM(XQ.WQ.)]
W Cia’l

2
s.t. HquqH =n if Mode B for block ¢

\\ ||w q||2 =n 1f New Mode A for block g /

The empirical evidence shows that Mode A (unknown) criterion is approximated
by the New Mode A criterion
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PLS-PM as a general framework for
data analysis
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PLS-PM SPECIAL CASES

* Principal component analysis

* Multiple factor analysis

e Canonical correlation analysis

* Redundancy analysis

* PLS Regression

* Generalized canonical correlation analysis (Horst)

* Generalized canonical correlation analysis (Carroll)

* Multiple Co-inertia Analysis (MCOA) (Chessel & Hanafi, 1996)
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One block case

Principal Component Analysis through PLS-PM”

SPSS results
(principal components)

Component Matri}

Corponen XL-STAT graphical results
VVLT1 . 648
VVLT2 . 729
VVLT3 . 823

VVLT4 . 830 : ,

Extraction Method: Principal Component Analysis.

a. 1 components extracted.

Component Matri»®

Component
VCPT1 ) 869
VCPT2 ) 9 1 9
VCPT3 ] 938
VCPT4 ) 92 O

Principal Component Analysis.
a. 1 components extracted.

* Results from W.W. Chin slides on PLS-PM
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Two block case

Tucker Inter-batteries Analysis

(1st component) v~
arg max{cov(Xlw1 X, W, )}

[wi[iiw =1

Mode A for X, Mode A for X,

Canonical Correlation Analysis

(1st component) X, ~ . ﬁ X,

arg max {cov(Xlwl,szz)}
Mode B for X, Mode B for X,

var(X,w, )=var(X,w, )=I

: ~
Redundancy Analysis X, X,
(1st component)

arg max {COV(XIWI 9X2W2 )} Mode B for X, Mode A for X,

var(X,w, )5 |w,|[=1
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Hierarchical Models
il %Xl \

X [ Xg |7

- X

Mode A + Path Weighting

— Lohmédller’s Split PCA

— Multiple Factorial Analysis by Escofier and Pages arg max {2 . cov’ (kak ’XW)}
— Horst’s Maximum Variance Algorithm var(Xow L Xw=D X

— Multiple Co-Inertia Analysis (ACOM) by Chessel and Hanafi

Mode B + Factorial

— Generalised Canonical Correlation Analysis (Carroll) arg max {2 cor (X W, XW )}
var(X, w, )=1,Xw=2kawk

Mode B + Centroid
- Generalised CCA (Horst’s SUMCOR criterion) argmax  {Y cor’(X,w,.Xw)}
~ Mathes (1993) & Hanafi (2004) var(X,w =L Xw=3 X,
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‘Confirmatory’ PLS Model

Each LV is connected to all the others

1\ /

X, &, Ss I X,
1\ /

X, S S — X4
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PLS criteria for multiple table analysis

Method Criterion ( F,=X,w,, F= XW) ;[(fkgath Mode Scheme
(1) SUMCOR Max Zj.k Cor(F;, Fy) Hierarchical B Centroid
(Horst 1961) or
Max}_; Cor (F;,%; F)
(2) MAXVAR Max { A [Cor(F;, Fi)]} (a) Hierarchical B Factorial
(Horst 1961) or or
GCCA Maxy_; Cor*(F;, Fj+1)
(Carroll 1968)
(3) SsqCor Max?3y_;; Cor®(F;, Fi) Confirmatory B Factorial
(Kettenring 1971)
(4) GenVar Min {det[Cor(F;, Fi)]}
(Kettenring 1971)
(5) MINVAR Min {h . [Cor(F;, F)]} (b)
(Kettenring 1971)
(6) Lafosse (1989) Maxy~; Cor* (F;, 3", Fi)
(7) Mathes (1993) Max3}_;; |Cor(F;, Fi)| Confirmatory B Centroid
or Hanafi (2005)
(8) MAXDIFF Max wjll=1 Zj;gk Cov(X jw;, Xpwy)
(Van de Geer, 1984
& Ten Berge,
1988) s From Tenenhaus et Hanafi (2010)
(9) MAXBET (Van Maxay e j =1 Zj.k Cov(Xjw;, Xpwy)

de Geer, 1984 &
Ten Berge, 1988)

(]0) MAXDIFF B M(I.Xau "Wj =1 Zj;ék C‘OV2 (XI Wi, ch W'L)
(Hanafi and (@) Afirgt [Cor( F;.Fy )] is the first eigenvalue of block LV correlation matrix.
Kiers 2006)

(b) At [Cor( F;. Fk)] is the last eigenvalue of block LV correlation matrix.
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PLS criteria for multiple table analysis

Method Criterion PLS path Mode Scheme
model
(11) (Hanafi and Maxait | ||=1 Zﬁék |Cov(X jw;, Xpwp )|
Kiers 2006)
(12) ACOM Maxai jjw j =1 Zj Cmv'Z(ij,- s Xj+1wj+1) Hierarchical A Path-
(Chessel and or , weighting
Har?aﬁ 1996) or Ming Y “ X;—F p,T- "
Split PCA
(Lohméller 1989)
(13) CCSWA Maxay e lI=1,Var(F)=1 2 Cov“(ij,- F)
(Hanafi et al., or )
2006) or HPCA Minypy=1 Y; |X;XT —A; FFT -
(Wold et al., 1996) s Pixg -4, | From Tenenhaus et Hanafi (2010)
(14) Generalized Maxy R*(F,X;)X Cor? (x,-;., f?j) (c)
PCA (Casin 2001) J h
2
(15) MFA (Escofier ~ Mingp. 3 ‘ X; — Fpt Hierarchical A Path-
and Pagés 1994) J \,/ Mirst [C"’ G X)) (applied to the weighting
reduced X ;)
. (d)

—1/2 “
(16) Oblique Ming, > (X; (LXTX;) " — Fpl Hierarchical A Path-
maximum variance J (applied to the weighting
method transformed
(Horst 1965) X;)(e)

(c) ﬁj is the prediction of F' in theregression of F on block X ;.
(d) The reduced block number j is obtained by dividing the block X ; by the square root of A s [Cor(xjh . xl,-g)] .
(e) The transformed block number j is computed as Xj[(l/n)XjTXj]_l/z.
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Model Assessment
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Reliability

The reliability rel(x, ) of a measure x, of a true score §q modeled as
X, = M,Gq + 0, is defined as:

a N

A var(&
rel(qu) = i’]qar(xﬁq)q) = cor’ (qu,f_;'q)
- /

rel(x, ) can be interpreted as the variance of x, that is explained by g,
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Measuring the Reliability

Question:

How to measure the overall reliability of the measurement tool ?

In other words, how to measure the homogeneity level of a block X, of
positively correlated variables?

Answer:

The composite reliability (internal consistency) of manifest variables
can be checked using:

* the Cronbach’s Alpha
e the Dillon Goldstein rho
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Composite reliability

The measurement model (in a reflective scheme) assumes that each group of
manifest variables is homogeneous and unidimensional (related to a single
variable). The composite reliability (internal consistency or homogeneity of a
block) of manifest variables is measured by either of the following indices:

2
., P Zpip,cov(qu,xp,q) y - (Zplpq) Xvar(fq)
q q 2

(Pq B 1) }; + Zp;cp'cov(qu’xp'q)
Where:
- X, 18 the p-th manifest variable in the block q,
- P, is the number of manifest variables in the block,
- My 18 the. compon.ent loading for x .
- var(g,,) 1s the variance of the measurement error
- MVs are standardized

Cronbach’s alpha assumes lambda-equivalence (parallelity) and is a lower bound estimate
of reliability

The manifest variables are reliable if these indices are at least (.7
(0.6 to 0.8 according to exploratory vs. confirmatory purpose)
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Average Variance Extracted (AVE)

The goodness of measurement model (reliability of latent variables)
is evaluated by the amount of variance that a LV captures from its
indicators (average communality) relative to the amount due to
measurement error.

Average Variance Extracted

2, A varlt,)]
Zp[lﬁq Var(fqﬂ+ Zq(l — ),;q)

AVE =
q

* The convergent validity holds if AVE 1s >0.5
* Consider also standardised loadings >0.707
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What if unidimensionality is rejected?

Four possible solutions:

e Remove manifest variables that are far from the model

e C(Change the measurement model into a formative model (eventual

multicollinearity problems -> via PLS Regression)

e Use the auxiliary variable in the multiple table analysis of unidimensional

sub-blocks:

X13;®\ %'

o

X«

e Split the multidimensional block into unidimensional sub-blocks
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Discriminant and Nomological Validity

The latent variables shall be correlated (nomological validity) but they need to
measure different concepts (discriminant validity). It must be possible to
discriminate between latent variables if they are meant to refer to distinct concepts.

{Hozcor(éq,éjq,)zl } {Hozcor(dfq,gq,)zo}

The correlation between two latent variables is tested to be significantly lower than 1

(discriminant validity) and significantly higher than O (nomological validity):
Decision Rules:

The null hypotheses are rejected if:

1. 95% confidence interval for the mentioned correlation does not comprise 1 and O,
respectively (bootstrap/jackknife empirical confidence intervals);

2. For discriminant validty only: (AVE, and AVE, ) >COI” Sq,é].) which indicates

that more variance is shared between the LV and its block of indicators than with

another LV representing a different block of indicators.
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Model Assessement

Since PLS-PM is a Soft Modeling approach, model validation regards only the way
relations are modeled, in both the structural and the measurement model; in particular,
the following null hypotheses should be rejected:

a) h,,=0,aseach MV is supposed to be correlated to its corresponding LV;

b) w,,=0,aseach LV is supposed to be affected by all the MV of its block;

C) qu, = 0, as each latent predictor is assumed to be explanatory with respect to its
latent response;

d) R2q* =0, as each endogenous LV is assumed to be explained by its latent predictors;

e) cor(§,; §,) = 0, as LVs are assumed to be connected by a statistically significant

correlation. Rejecting this hypothesis means assessing the Nomological Validity of
the PLS Path Model;

f) cor(Eq; E..) =1, as LVs are assumed to measure concepts that are different from one
another. i{ejecting this hypothesis means assessing the Discriminant Validity of the
PLS Path Model;

g) Both AVE, and AVE_. smaller than cor*(§;; &), as a LV should be related more

strongly with its block of indicators than with another LV representing a different
block of indicators.
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Model Quality
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Communality

For each manifest variable x, the communality is a squared

correlation:
. 2
[Comm = cor (qu, ")J

The communality of a block 1s the mean of the communalities of its MVs

1 &
Com, =p—z{cor2 (qu, q) Xzq
q p=

X3q /
(NB: if standardised MVs: Com, = AVE )

The communality of the whole model is the Mean Communality,
obtained as:

E/l _ zq:Pq>1([)q X Cqu)
Zq:f:1>1})q
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Redundancy

Redundancy is the average variance of the MVs set, related to the J*
endogenous LVs, explained by the exogenous LVs:

f— Var[ﬁqq*gq}/lz *
i Var[qu*] =

L Redundancy . =R’ (éj oSg e e ) x Communality }
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CV-communality and redundancy

The Stone-Geisser test follows a blindfolding procedure: repeated (for all data points)
omission of a part of the data matrix (by row and column, where jackknife proceeds
exclusively by row) while estimating parameters, and then reconstruction of the omitted part

by the estimated parameters.

This procedure results in:

- a generalized cross-validation measure that, in case of a negative value, implies a bad

estimation of the related block

- « jackknife standard deviations » of parameters (but most often these standard deviations
are very small and lead to significant parameters)

Communality Option

~

2 ZE(XMI—X —l )
H =1--1

’ ZZ( pqi_ pq

\

)

Redundancy Option (also called Q?2)

/

q

\

F2

—

A )
PP ACHEW A Pred(, )’

qg i

2 Z (qui _ipq )2

)

The mean of the CV-communality and the CV-redundancy (for endogenous blocks) indices can be
used to measure the global quality of the measurement model if they are positive for all blocks

(endogenous for redundancy).
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Blindfolding procedure

e ) X ]
el e s )X
.
or | [ ] ] et
s )] e (X

From W.W. Chin’s slides on PLS-PM
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Blindfolding procedure

Q
Q

From W.W. Chin’s slides on PLS-PM
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A global quality index for PLS-PM

* PLS-PM does not optimize one single criterion, instead it is very flexible as
it can optimize several criteria according to the user’s choices for the
estimation modes, schemes and normalization constraints.

e Users and researchers often feel uncomfortable especially as compared to
the traditional covariance-based SEM.

* Features of a global index:

— compromise between outer and inner model performance;

— bounded between a maximum and a maximum
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Godness of Fit index

5y

GoF = _ 1 2 ECO;»Z (qu,fq) X 1* §R2 (fq*,éj explaining fq*)
Z P q:P,>1 p=1 Q q*=1

q:P,>1
G J _J
Y Y
Validation of Validation of
the outer model < - the inner model

The wvalidation of the inner
model is obtained as average of
the R2 wvalues of all the

structural relationships.

The validation of the outer model is
obtained as average of the squared
correlations between each manifest
variables and the corresponding
latent wvariable, i.e. the average
communality!
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Mediation
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Mediated effect

Mediator: a variable that is intermediate in the causal process
relating an independent to a dependent variable.

= A mediator is a variable in a chain whereby an independent variable causes
the mediator which in turn causes the outcome variable (Sobel, 1990)

= The generative mechanism through which the focal independent variable 1s
able to influence the dependent variable (Baron & Kenny, 1986)

= A variable that occurs in a causal pathway from an independent variable to a
dependent variable. It causes variation in the dependent variable and itself is
caused to vary by the independent variable (Last, 1988)
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Single mediator model

MEDIATOR

(INTERVENING)
M

INDEPENDENT
VARIABLE

X

A 4

DEPENDENT
VARIABLE

Y
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Mediation Causal Steps Test

—> Series of steps described in Judd & Kenny (1981) and Baron
& Kenny (1986).

- One of the most widely used methods to assess mediation in
psychology.

—> Consists of a series of tests required for mediation as shown in
the next slides.
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Mediator model: 7otal Effect

1. The independent variable causes the dependent variable:

Y=i,+tcX+e

MEDIATOR
M
INDEPENDENT DEPENDENT
VARIABLE " VARIABLE
X c Y
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Mediator model: Direct effect of X on M

2. The independent variable causes the potential mediator:

M=i,+aX +e,

MEDIATOR
3 M
INDEPENDENT DEPENDENT
VARIABLE VARIABLE
X Y
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Mediator model: Direct Effects of M and X on Y

3. The mediator causes the dependent variable controlling for
the independent variable:

Y=1i+¢c X+bM +e¢

MEDIATOR
M
\
INDEPENDENT DEPENDENT
VARIABLE o "  VARIABLE
X Y
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Single mediator model

 Mediated (Indirect) effect : ab

e Direct effect : ¢’

« Total effect : c = ab+c’

INDEPENDENT

MEDIATOR

(INTERVENING)
M

INDIRECT EFFECT

VARIABLE
X

C
DIRHBL EFFECT

DEPENDENT
VARIABLE

Y
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Testing for significant mediation

M 1s a full (partial) mediator if the following conditions are
satisfied:

—> c is significant
—> ¢’ is not significant (still significant but less than c)

—> Indirect effect ab is significant:
1. Sobel Test:

Standard error of the
mediated effect

2. Bootstrap confidence interval
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PLS-PM

an example for measuring Customer Satisfaction
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European Customer Satisfaction Index (ECSI) Model

Perceptions of consumers on one brand, product or service

| IMAG1 || IMAG2 || IMAG3 || IMAG4 || IMAG5 |
CUEX1 || CUEX2 || CUEX3 | cusL1 || cusL2 || cusL3
Image
Expectation PERV1 Loyalty
Perceived Satisfaction
Value
— Iil
= Perceived [Pz | cUsAS
PERQ3 Quality Complaints

| Perad || PeRas || Peros || Pera7 |

CUSCO

* ECSI is an economic indicator describing how the satisfaction of a customer is modeled

e It is an adaptation of the « Swedish Customer Satisfaction Barometer » and of the «

American Customer Satisfaction Index (ACSI) proposed by Claes Fornell
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Application to mobile data

Latent variables

Moanifest variables

Customer expectations of
the overall quality (52)

Perceived quality (53)

Perceived value (E4)

Customer satisfaction (§2)

Customer complaints (8¢)

Customer loyalty (87)

(a) It con be tnasted in what it says and does
(b) It is stable and firmly established

(c) It has a social contribution for the society
(d) It is concerned with customers

(o) It is innovative and forward looking

(a) Expectations for the ovenll quality of “your mwobile phone
provider” at the moment you became customer of this provider

(b) Expectations for "“your mcbile phone provider” to provide prod-
ucts and services to meet your personal need

(¢) How often did you expect that things could go wrong at
mobile phone provider”

your

(a) Ovenll perceived quality

(b) Technical quality of the network

(¢) Customer service ond personal advice offered

(d) Quality of the services you use

(2) Range of services and products offered

(f) Reliability and accuracy of the products and services provided
(g) Clarity and transporency of information provided

(a) Given the quality of the products and services offered by “your
mobile phone provider” how would you mte the fees and
prices that you pay for them?

(b) Given the fees and prices that you pay for “your mobile phone
provider” how would you mte the quality of the products and
services offered by “your mcbile phone provider™?

(a) Ovenall satisfaction

(b) Fulfillment of expectations

(¢) How well do you think "“your mcbile phone provider” compares
with your ideal mobile phone provider?

(a) You complained about “your mobile phone providee” last year.
How well, or poorly, woas your most recent complaint handled

or

(b) You did not complain about “your mcbile phone provider” last
year. Imogine you have to complain to “your mcbile phone
provider” because of a bad quality of service or product. To
what extent do you think that “your mobile phone provider™ will
care about your complaint?

(a) If you would need to choose a new mobile phone provider how
likely is it that you would choose “your provider” again?

(b) Lot us now suppose that other mobile phone providers decide to
lbower their fees and prices, but “your mobile phoos provider”
stays ot the some level as today. At which level of difference (in
%) would you choose another mobile phone provider?

(c) If a friend or colleague asks you for advice, how likely is it that
you would recommend “your mcbile phone provider™?

All the 1

tems measured on a Likert scale from 1 (very

negative point of view on the service) to 10 (vey

Expectation

Perceived
Quality

positive point of view on the service)

Loyalty
¢ Satisfaction

e Standardized MVs
* (Centroid Scheme
e Mode A

Complaints
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Examples of Manifest Variables

Customer expectation

1. Expectations for the overall quality Customer satisfaction

of “your mobile phone provider” at

provider” to provide products and

services to meet your personal need.

3. How often did you expect that things

the moment you became customer of L.
this provider.
2.
2. Expectations for “your mobile phone
3.

Overall satisfaction

Fulfilment of expectations

How well do you think “your
mobile phone provider”
compares with your ideal

mobile phone provider ?

could go wrong at “your mobile

phone provider” ?
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Examples of Manifest Variables

Customer lovalty

1. If you would need to choose a new mobile phone provider how
likely is it that you would choose “your provider” again ?

2. Let us now suppose that other mobile phone providers decide to
lower fees and prices, but “your mobile phone provider” stays at
the same level as today. At which level of difference (in %) would
you choose another phone provider ?

3. If a friend or colleague asks you for advice, how likely is it that

you would recommend ‘““your mobile phone provider” ?

The PLS approach to CB-LVPM — Antwerp, Belgium, 29th April 2016



Final thoughts about PLS and SEM
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Component-based methods vs. Factor-based
methods

Latent variable or linear composite?

* Incomponent-based SEM the “latent variables” are defined as
linear composites or weighted sums of the manifest variables.
They are fixed variables (scores)

* In covariance- based SEMs the latent variables are equivalent to
common factors. They are theoretical variables

This leads to different parameters to estimate for latent variables, i.e.:
e factor means and variances in covariance-based methods

* weights in component based approaches

Casewise scores are essential in several applications where
observations count...
PLS-PM is a component-based method, and we should see this
character as a strength.
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Prediction-oriented of confirmatory approach?

Reproducing model parameters is not the same thing as
making valid predictions about individual observations.
“Factor-based methods are fundamentally unsuitable for prediction, especially for

prediction outside the dataset used to estimate the factor model, because of factor
indeterminacy” (Rigdon, 2014)

PLS is a prediction-oriented method

Using an inwards-directed measurement model in PLS-PM produces
higher R? values for proxies of endogenous construct. It provides most
accurate in-of-sample prediction

Using an outwards-directed measurement model in PLS-PM produces
higher R? values in regression with observed variables. It delivers
better prediction on out-of-sample data
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PLS as a SEM estimator

Could we consider PLS-PM as a SEM estimator?

NO, because:

 Lack of unbiasedness and consistency

YES, because:

* Consistency at large, i.e. large number of cases and of indicators for
each latent variable (“finite item bias”)

* PLSc (Dijkstra and Henseler, 2015), PLS algorithm yield all the
ingredients for obtaining CAN (consistent and asymptotically
normal) estimations of loadings and LVs squared correlations of a
'clean' second order factor model.

vAv'q(Sq —diag(S,))W,

w (W W, —diag(w w )W,

The correction factor for weights is equal to: ¢, :=\/
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PLS as a SEM estimator: recent standpoints

“PLS path modeling should separate itself from factor-based SEM and renounce entirely all
mechanisms, frameworks and jargon associated with factor models...
Without rejecting rigor, but defining rigor in composite terms...”

Ed Rigdon (2012)
Rethinking PLSPM: In Praise of Simple Methods
Long Range Planning, 341-358

“I wish to maintain the double-sided nature of PLS that characterized it from the very start. In the

family of a structural equations estimators PLS, when properly adjusted, can be a valuable
member as well...”

“Our task is to find out which approach works best in which circumstances...Let us establish
empirically where each works best. For problems in well-established fields highly structured
approaches like mainstream SEM may be appropriate, other fields will be well served by highly
efficient means of extracting information from high dimensional data...”

Dijkstra (2014)
PLS’ Janus Face — Response to Professor Rigdon’s ‘Rethinking Partial Least Squares Modeling: In Praise of Simple Methods’

Long Range Planning

The PLS approach to CB-LVPM — Antwerp, Belgium, 29th April 2016 G. Russolillo — slide 108



Multi-component estimation for
Predictive PLS-PM

PLS Regression for outer model regularization in PLS-PM
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Integrated PLS Regression-based Approach to
PLS-PM algorithm

MVs are centered or standardized | t,prop to £X w,if
Mode PLScore
. t,= =X, w,if Mode |
PLScow  |7TTTTTTCT--
= v - “u \
. . Outer
Initial W estimation e
step | - q al
¥ Reiterate till
! . Inner
Numerical } estimation
Convergence
Mode PLScore (inwards directed links): PLS
Regression under the classical PLS-PM constraints

of unitary variance of the composite scores ; J

Mode PLScow (outwards directed links): PLS

Regression under the constraints of normalized DN Choice 0.f weights Cos
outer weights - Centroid: correlation signs

- Factorial: correlations
- Path weighting scheme: multiple regression
Update weights W coefficients or correlations

— —
—
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PLS Regression rationale

Research of m (value chosen by cross-validation or defined by the

user) orthogonal components v,,, = X a, which are as correlated as

possible to z, (from the iner estimation step) and also explanatory of
their own block X, .

Covi(Xyay»zy) = Cor’(Xga,,,,z)*Var(Xa,)

PLS1 (regression) Mode leads to a compromise between a multiple
regression of z, on X,  (Mode B) and a principal component analysis
of X, (Mode A for a single block)
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PLS Regression algorithm in PLS-PM

1. First PLS component v, (with x,, standardized as well):

qu:anlq:\/ )Zcor(zq,qu)xqu
p

2. Normalization of the vector a,,= (a;14,---,81,q)
3. Regression of z, on v, =X a,, expressed in terms of X,

4. Computation of the residuals z; and X, of the regressions
. — — H
of z, and X, onv,,: z,=CqVqq +Zggand X, =V, P’hq + Xy

For successive components the procedure is iterated on residuals
and assessed by means of cross-validation or stopped by the user
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PLS Regression algorithm in PLS-PM

Finally, the m-components PLS regression model yielding the weights
for the outer estimate, as each component can be expressed as a
function of X :

Z,=C,\V,+C,V,, +..+c,V, +res

q mq — mq

=c,Xa,+c¢ X a, +..+c, X  a +res

* *
=c Xa, +c, Xa, +..+c, Xa, +res
* *
—Xq(clqa1q+czqazq+...+c a )+res

mq - mq

=X W tres=w X +w,X, +..+w X +res

P9 pq
— __J
-~
tq
Further transformed so as to satisfy the

classical normalization constraint: Var(t,)=1
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Features of the integrated PLS approach

* No need to invert X X (i.e. takes full advantage of the
NIPALS algorithmic approach)

* Decomposition into common (explanatory) and distinctive
dimensions

* Criterion of fairness across blocks, 1.e. takes into account
heterogeneous levels of noise

* Number of dimensions in each block chosen in coherence
with a prediction purpose

* Choosing a different number of dimensions per block does
not affect normalization constraints
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Two possible normalization constraints for PLS
regression Modes

Normalization constraints on

Outer weights Composite scores
(like in RGCCA) (like in PLS-PM)

Covariances between LVs PLScow
Oriented to

Correlations between
LVs PLScore

PLScore Mode:

PLS Mode oriented to maximizing correlations between connected
composites under normalization constraints on composite scores

PLScow Mode:

PLS Mode oriented to maximizing covariances between connected
composites under normalization constraints on outer weights

The PLS approach to CB-LVPM — Antwerp, Belgium, 29th April 2016 G. Russolillo —slide 115



PLS regression Modes in PLS-PM and Ridge
Mode in RGCCA

PLS-R as an estimation method for measurement model in standard PLS-PM
(normalization constraints on composite scores)

m, m, = Pq

PLScore Mode
[ Esposito Vinzi et al., 2009]
Mode PLS in XLSTAT-
PLSPM and in plspm R pack =1
cn
10
C ﬁe\aﬁoﬁ 2
Q)
)8
apy
CcoV annanc® -
m _pP

New Mode

PLScow Mode B
=1 w,|=1

PLS-R as an estimation method for measurement model in a modified PLS-
PM (normalization constraints on outer weights)
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Hbat Model (Hair et al., 2010) with noisy variables

EP1
| JS1 JS2 JS3 JS4 JSS |
| EP2
Environmental
Perceptions
EP3 Tob
‘ Satisfaction
EP4
‘ SI1
, S12 |
Staying |
‘ intention .
| AC1 SI3 |
) Attitude Organiz.ational S14 |
toward Commitment '
‘ Coworkers
| AC3
| Ac4
0C2 0C3 0OC4 ql q2 q3 q4 noisel || noise2 || noise3 || noise4

q variables: highly correlated among noise variables: highly correlated among
them, correlated with the MVs of the them and uncorrelated with all the others
response block SI and uncorrelated | | variables in the model. In particular
with all the others variables in the orthogonal to the variables related to the
model response block SI.
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PCA of the Org. Commitment (OC + noisy data)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11
Eigenvalue 4.021 3.947 2.246 0.493 0.262 0.007 0.007 0.006 0.005 0.004 0.003
Variability (%) 36.555 35.884 20.416 4.478 2.380 0.066 0.061 0.054 0.042 0.038 0.026
Cumulative % 36.555 72.440 92.856 97.334 99.714 99.779 99.840 99.894 99.936 99.974 100.000
Scree plot
s 10
4
35 0
) g
= 25 .g
£ 5
& 2 2
o Lo E
15 2
- |
(&)
t L 20
05
0 —t— —t— —t— —t— —t 0o
6 F7 8 S 10 11
s Correlation
. F1 F2 F3
with factors
0Cc2 0.000 0.006 0.892
0OC3 0.000 0.004 0.806
ocCa 0.000 0.006 0.895

ql 0.676 0.733 0.000

The real OC manifest 02 065 678 0004

0.672 0.737 0.002

variables appear only on the | oo oo 000

qd
3rd PC noisel 0.745 -0.665 0.001
noise2 0.749 -0.660 0.005
noise3 0.742 -0.668 0.003
noise4 0.745 -0.664 0.000
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PLS Regression of the OC noisy data on Staying
Intention (SI)

Correlations with t on axestl and t2

The noise variables are
downweighted as they have
no predictive power

075

025

oX oY

Variable t1 t2 Variable w*1 w*2
s 0ocC2 0.400 0.850 0oc2 0.380 0.771
0Cc3 0.330 0.623 0OC3 0.214 0.204
07 oc4 0.3%4 0.814 0oc4 0.326 0.558
ql 0.900 -0.428 ql 0.416 -0.182
4 g2 0.898 -0.432 q2 0.420 -0.159
- 073 03 025 © q3 0.901 -0.427 q3 0.423 -0.152
. q4 0.896  -0.436 g4 0.417  -0.170
nl 0.006 -0.049 nl 0.000 -0.015
n2 0.013 -0.049 n2 0.003 -0.017
n3 0.002 -0.046 n3 -0.002 -0.015
nd 0.006 -0.051 n4 -0.001 -0.019

The PLS approach to CB-LVPM — Antwerp, Belgium, 29th April 2016 G. Russolillo —slide 119



PLS Regression for the OC outer model in PLS-PM

Model quality by number of components

Correlations with t on axes t1 and t2

! 1
09 T
0,75
08 +
| 05 82
06 T+ oc3
E 05 7 0,25
T 04+
N o0
03 + p”
*21 0,25 oy
01 +
0 05
1 2
Components -0,75
-1
HQ*cum MRYcum MR cum -1 075 05 025 0 025 05 075 1
VIPs (Gdmp2)
2,5
Variable t1 t2
0C2 0.740 0.552 ,
OC3 0.640 0.415
0C4 0.731 0.516
q1 0.581 -0.808 T
q2 0.577 -0.811 S
q3 0.583 -0.808 1+
q4 0.575 -0.814 L
n1 0.001 -0.024 05 1
n2 0.007 -0.028
n3 -0.001 -0.020
o -
?)4C 8222 _g?i? 0C2 Oc4 0C3 g3 92 ql g4 nd n3 n2 nl

Variable
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A comparison between Modes PLScore, A and B:

outer weights

Mode PLScore Mode A Mode B

0OC2 0.435 0.361 -0.655
OC3 0.277 0.258 -0.156
OC4 0.358 0.317 -0.222
0.088 0.144 0.656

0.090 0.145 -0.228

0.092 0.147 -0.225

0.090 0.144 -0.563

0.000 0.000 -0.589

0.000 0.001 -0.093

-0.002 -0.001 0.374

-0.003 -0.002 0.304
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Non-Metric PLS-PM
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Steven’s measurement scale classification

Basic empirical Mathematical . . . .
Scale . P Permissible statistics
operations group structure
Determination of . .
NOMINAL . Permutation group mode, chi square
equality
Determination of . . .
ORDINAL Isotonic group median, percentile
greater or less
Determination of mean, standard deviation,
INTERVAL | equality of inter- General linear group product moment and rank or-
vals or differences der correlations
Determination of c ey eometric mean, harmonic
RATIO Similarity group g '

equality of ratios

mean, coefficient of variation

e Interval and Ratio scales are METRIC structures, 1.e. sets where notion of

distance (metric) between elements of the set 1s defined.

* Nominal and Ordinal scales are NON-METRIC structures (unordered and
ordered sets).

« Statistical analyses based on Pearson's correlation should be performed only

on metric variables.
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Ordinal vs Nominal variables

Nominal and ordinal variables are categorical variables, i.e. variables
that associate each observation to one of the m groups defined by
their categories.

From the mathematical point of view, they are similar:

* Both are not continuous variables

* Both have no metric properties

* Both do have no origin or units of measurements

The only difference between nominal and ordinal variables is that groups
defined by categories of an ordinal variable can be conceptually ordered.
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PLS-PM assumptions

Two basic assumptions underlying PLS models:

Each variable is measured on a interval (or ratio) scale.

Relationships between variables and latent constructs are linear
and, consequently, monotonic.

However, in practice:

* Nominal variables are handle using boolean coding

* Ordinal variables (e.g. likert scale items) are coded by numerals
(1,2,3.)

* Linearity 1s almost never checked
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Three good pratical reasons..

.. To NOT use boolean coding in PLS-PM

1) The numbers of categories affects the relative impact of categorical
variables and generates sparse matrices.

2) It measures the impact of the single category, giving up the idea of
the variable as a whole

3) The importance of categories associated to central values of the LV
distribution is systematically underestimated.
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The relation between Z, and X,

The weight of a MV depends on the linear relation between the MV

and the LV inner estimate

ID z X X xb R2=0,675
obs1 1 a 1 0 0
obs2 2 a 1 0 0 e
obs3 3 a 1 0 0 Dy
obs4 4 b 0 1 0 N~
obs5 5 b 0 1 0 S~
obs6 6 b 0 1 0 —‘—‘—NH
obs7 7 c 0 0 1 =
obs8 8 c 0 0 1
obs9 9 [ 0 0 1 §

R2=0 R?= 0,675
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Ordinal variables in linear models

*  “Ordinal variables are not continuous variables and should not be treated as
if they were”.

e “It 1s common practice to treat scores 1,2,3.... assigned to categories as if
they have metric properties but this is wrong.”

* “Ordinal variables do not have origins or units of measurements”

e “To use ordinal variables in SEM requires other techniques than those that
are traditionally used with continuous variables”

Joreskog (1994) speaking about covariance-base SEM

These statements are valid in PLS-PM framework too!

The PLS approach to CB-LVPM — Antwerp, Belgium, 29th April 2016 G. Russolillo — slide 128



Scaling

* Scaling a variables means providing the variable with a metric: each
observed category (or distinct value) of the raw (i.e. to be scaled)
variable 1s replaced by a numerical value.

* The new scale 1s an interval scale, independently of the properties of
the initial measurement scale.

* Scaling techniques are generally used to convert a WEAKER
measurement scale INTO A STRONGER measurement scale..

 However, it can be useful to RE-SCALE a metric variable by
providing it with a DIFFERENT metric..
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Scaling Level

* We don't need to retain all of the properties of the 1nitial
measurement scale of the variable.

* The scaling level 1s defined by the the properties of the
initial measurement scale that the reseacher choose to
retain 1in the new measurement scale
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Optimal Scaling (OS)

To define a scaling process as optimal, the scaling parameter estimates
must be:

—> Suitable, as it must respect the constraints defined by the scaling
level

— Optimal, as it must optimize the same criterion of the analysis in
which the OS process 1s involved.
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Non-Metric Partial Least Squares
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Non-Metric Partial Least Squares

The OS principle, applied to PLS-PM, allows us:

* Handling numerical, ordinal and nominal variables in the same model

* Checking and/or adjusting the data for non-linearity and non-
monotonicity

* Dealing with outliers

* Suggesting a discretization process

e Each raw variable is transformed as X o< X @, where ¢'= (¢1 . ¢K) 1s the
vector of optimal scaling parameters and the matrix X defines a space in
which constraints imposed by the scaling level are respected.

* Optimal quantification are calculated by means of a PLS-based iterative
algorithm
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Non-Metric PLS Path Modeling algorithm

A new PLS algorithm which works (also) as an optimal scaling algorithm:
NM-PLSPM assigns a scaling (numeric) value to each category (or distinct

value) k (k=1 ... K < N) of raw variables x, such that
* It 1s coherent with the chosen scaling level;

* It optimizes the PLS criterion, if any.

Outer weights and scaling parameters are alternately optimized in a
modified PLS loop where a quantification step 1s added.

= In standard PLS steps the outer weights are optimized for given

scaling values.

—> In the quantification step, instead, the scaling values are optimized
for given outer weights: raw variables are properly transformed

through scaling (quantification) functions Q()
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NM-PLSPM algorithm iteration

Outer Estimation

T t, =X W, | e » Updating the inner
weights e,

— Centroid, Factorial
w,o<(1/n)X,z, (Mode A) or Path weighting

X, ) X h
W, o< (Xqu) 1Xqu(MOde B) scheme

Updating the outer weights
(Normalization depending on the Mode)
A

Inner
Estimation

X, o Q(qu,lzq) (Mode (new) A)

f(pqocQ(X X*) (Mode B)

rq°°pq

Quantification
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NM-PLSPM general criterion

e

arg max gcqq‘g[cm(xqwq,xq.wq,)Jvar(xqwquar(xq,wq.)]

Wy» ¢pq’ qu q=q'

A 2
quqH =n 1f Mode B for block g

\\ HW q‘ |2 =n 1f New Mode A for block ¢ /

Each time the PLS-PM algorithm converges to a criterion, the corresponding
Non-Metric version converge to the same criterion
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PLSPM R-package

The NN-PLSPM algorithm is implemented in the R-package plspm:

plspm: Tools for Partial Least Squares Path Modeling (PLS-PM)

plspm contains a set of functions for performing Partial Least Squares Path Modeling (PLS-PM)
analysis for both metric and non-metric data, as well as REBUS analysis.

Version: 04.1

CRAN Depends: R (= 3.0.1), amap, diagram, tester, turner

Mirrors Suggests: plsdepot, FactoMineR, ggplot2, reshape, testthat, knitr

%}%‘57:‘%’ Published: 2013-12-08

W Author: Gaston Sanchez [aut, cre], Laura Trinchera [aut], Giorgio Russolillo [aut]
Maintainer: Gaston Sanchez <gaston.stat at gmail.com>

About R License: GPL-3

%%—n}?fﬁ ! URL: http://www.gastonsanchez.com http://www .plsmodeling.com

NeedsCompilation: no

Two types of quantification are currently allowed:

* Nominal Scaling, in which the following group constraint is considered:

(xi ~ xi‘) = ()%i = )Aci')

* Ordinal scaling, in which a further order constraint is considered:
(xl. ~ xi.) = (X, =X,) and (xl. < xi.) = (X, <x,)
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An application to the Russett data (19635)

* gini: Gini’s index of concentration;

* farm: complement of the percentage of farmers that own half of the lands, starting with
the smallest ones. Thus i1f farm 1s 90%, then 10% of the farmers own half of the lands;

* rent: percentage of farm households that rent all their land.

* gnpr: gross national product pro capite (in U.S. dollars) in 1955;
» labo: the percentage of labor force employed in agriculture.

* 1inst: an index, bounded from O (stability) to 17 (instability), calculated as a function of
the number of the chiefs of the executive and of the number of years of independence
of the country during the period 1946-1961;

e cecks: the Eckstein’s index, which measures the number of violent internal war
incidents during the same period;

e death: number of people killed as a result of violent manifestations during the period
1950-1962;

* demo: a categorical variable that classifies countries in three groups: stable democracy,
unstable democracy and dictatorship.

The PLS approach to CB-LVPM — Antwerp, Belgium, 29th April 2016 G. Russolillo — slide 138



Russet data (1964): Quantifications
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Russet data (1964): Model comparison

PLS Model:
e« R2=.605
e GoF =.567

NM-PLS Model:
e R2=.793
e GoF=.772

AGRI
loadings

AGRI

/8.1849 Lﬁ\0.9814

F.9865 -
rent | gini

farm

AGRI
loadings

AGRI

.0.954

| 4 N

0.6292

.9588 -
rent TO gini

farm
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Application to mobile data

Latent variables

Moanifest variables

Customer expectations of
the overall quality (52)

Perceived quality (53)

Perceived value (E4)

Customer satisfaction (§2)

Customer complaints (8¢)

Customer loyalty (87)

(a) It con be tnasted in what it says and does
(b) It is stable and firmly established

(c) It has a social contribution for the society
(d) It is concerned with customers

(o) It is innovative and forward looking

(a) Expectations for the ovenll quality of “your mwobile phone
provider” at the moment you became customer of this provider

(b) Expectations for "“your mcbile phone provider” to provide prod-
ucts and services to meet your personal need

(¢) How often did you expect that things could go wrong at
mobile phone provider”

your

(a) Ovenll perceived quality

(b) Technical quality of the network

(¢) Customer service ond personal advice offered

(d) Quality of the services you use

(2) Range of services and products offered

(f) Reliability and accuracy of the products and services provided
(g) Clarity and transporency of information provided

(a) Given the quality of the products and services offered by “your
mobile phone provider” how would you mte the fees and
prices that you pay for them?

(b) Given the fees and prices that you pay for “your mobile phone
provider” how would you mte the quality of the products and
services offered by “your mcbile phone provider™?

(a) Ovenall satisfaction

(b) Fulfillment of expectations

(¢) How well do you think "“your mcbile phone provider” compares
with your ideal mobile phone provider?

(a) You complained about “your mobile phone providee” last year.
How well, or poorly, woas your most recent complaint handled

or

(b) You did not complain about “your mcbile phone provider” last
year. Imogine you have to complain to “your mcbile phone
provider” because of a bad quality of service or product. To
what extent do you think that “your mobile phone provider™ will
care about your complaint?

(a) If you would need to choose a new mobile phone provider how
likely is it that you would choose “your provider” again?

(b) Lot us now suppose that other mobile phone providers decide to
lbower their fees and prices, but “your mobile phoos provider”
stays ot the some level as today. At which level of difference (in
%) would you choose another mobile phone provider?

(c) If a friend or colleague asks you for advice, how likely is it that
you would recommend “your mcbile phone provider™?

All the 1

tems measured on a Likert scale from 1 (very

negative point of view on the service) to 10 (vey

Expectation

Perceived
Quality

positive point of view on the service)

Loyalty
¢ Satisfaction

e Standardized MVs
* (Centroid Scheme
e Mode A

Complaints
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Mobile data: Comparing model quality

Linearity hypothesis Monotonicity hypothesis No hypothesis
(No scaling) (Ordinal Scaling) (Nominal Scaling)
GoF =0471 GoF =0.526 GoF =0.547
R>=0.387 ‘ R>=0464 # R>=0.495
Com,, =0.599 Com,, =0.618 Com,, =0.623
Red,, =0.263 Red,, =0.315 Red,, =0.335
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Mobile data:
Ordinal quantification for perceived quality

Perceived Quality Latent Variable: 7 indicators
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Mobile data:
Nominal quantification for perceived quality

Perceived Value: 2 manifest variables

« PerVal1: Given the quality of the product and services offered by your mobile phone provider, how would
you rate the fees and the price that you pay for them?

« PerVal2: Given the fees and the price of the product and services offered by your mobile phone provider,
how would you rate the quality of the products and services offered by your mobile phone provider?

PerVal1 PerVal2

scaling values
0
@
scaling values
1
|
[ ]
[
[ ]

raw values raw values
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