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SEM: historical corner 
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•  Structural Equation Models (SEM)  are complex models allowing us to study real world 
complexity by taking into account a whole number of causal relationships among latent 
concepts (i.e. the Latent Variables, LVs), each measured by several observed indicators 
usually defined as Manifest Variables (MVs).

•  Factor analysis, path analysis and regression are special cases of SEM.
•  SEM is  a  largely  confirmatory,  rather  than exploratory,  technique.  It  is  used more  to 

determine whether a model is valid than to find a suitable model. But some exploratory 
elements are allowed

Key concepts:
Latent  variables  (unobservable  by  a  direct  way):  abstract  psychological  variables  like 
«intelligence», «attitude toward the brand», «satisfaction», «social status», «ability», «trust».

Manifest  variables  are  used  to  measure  latent  concepts  and  they  contain  sizable 
measurement errors to be taken into account: multiple measures are allowed to be associated 
with a single construct.

Measurement is recognized as difficult and error-prone: the measurement error is explicitly 
modeled seeking to derive unbiased estimates for the relationships between latent constructs.
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Structural Equation Modeling (SEM) 
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Structural Equation Modeling (SEM) 
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Several fields played a role in developing Structural Equation Models :

•   From Psychology, comes the belief that the measurement of a valid 
construct cannot rely on a single measure.

•  From  Economics  comes  the  conviction  that  strong  theoretical 
specification is necessary for the estimation of parameters.

•  From Sociology comes the notion of ordering theoretical variables 
and decomposing types of effects.
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Sewall Wright and Path Analysis 

Path Analysis aims to study cause-effect relations among several 
variables by looking to the correlation matrix among them. 

Sewall Wright (21 December 1889 –3 Mars 1988)

American Geneticist, son of the economist Philip Wright 

Path Analysis has been developed in the 20s by S. Wright 
to investigate genetic problems and to help his father in 
economic studies.

 
 
 

The main newness is the introduction of a new tool to 
investigate cause-effect relations: the path diagram
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Factor Analysis and the idea of Latent Variable 

Charles Edward Spearman (10 September 1863 – 17 September 1945)

English psychologist

C. Spearman proposed Factor Analysis (FA) at the begin of 
the ‘900s to measure intelligence in a  “objective” way.

The most important input from Factor Analysis is the 
introduction of the concept of “factor”, in other words the 

concept of Latent Variable

The main idea is that intelligence is measured by several variables, but the 
correlation observed among the variables should be explained by a unique 
underlying “factor”. 
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Thurstone and Multiple Factor Analysis 

Spearman approach has been modified in the following 40 years in 
order  to  consider  more  than  one  factor  as  “cause”  of  observed 
correlation among several set of manifest variables

Louis Thurstone (29 May 1887–30 September 1955) 
Psychometricien

the father of the Multiple Factor Analysis
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Causal models rediscovered 

Herbert Simon (June, 15 1916 – February 9, 2001) 
Economist – Nobel Prize for economic in 1978 

In 1954 presents a paper proving that “under certain 
assumptions correlation is an index of causality”

Hubert M. Blalock (23 Augut 1926 – 8 Febrary 1991) 
Sociologist
In  1964  published  the  book  “Causal  Inference  in  Nonexperimental 
Research”, in which he defines methods able to make causal inference 
starting from the observed covariance matrix. He faces the problem of 
assessing relations among variables by means of the inferential method.

They developed the SIMON-BLALOCK techinque
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Path analysis and Causal models 

He was one of  the  leading sociologists  in  the  world.  He introduces  the  Path 
Analysis of Wright's in Sociology.

In the mid-60's comes to the conclusion that there is no difference between the 
Path Analysis of Wright and the Simon-Blalock model.

With the economist  (and econometricien)  Arthur  Goldberger  he comes to  the 
conclusion that there is no difference between what was known in sociology 
as  Path  Analysis  and  simultaneous  equations  models  commonly  used  in 
econometrics.

Along with Goldberger he organizes a conference in 1970 in Madison (USA) 
where he invited Karl Jöreskog.
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Otis D. Duncan 
(December, 2  1921– November, 16 2004)
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Covariance Structure Analysis and K. Jöreskog 

Karl Jöreskog 
Statistician, Professor Emeritus at Uppsala University, Sweden

In the late 50s, he started working with Herman Wold. 
He discussed a thesis on Factor Analysis. 

In the second half of the 60s, he started collaborating with O.D. Duncan 
and A. Goldberger. This collaboration represents a meeting between Factor 
Analysis (and the concept of latent variable) and Path Analysis (i.e. the idea 
behind causal models).

In  1970,  at  a  conference  organized  by  Duncan  and  Goldberger, 
Jöreskog  presented  the  Covariance  Structure  Analysis  (CSA)  for 
estimating a linear structural equation system, later known as LISREL
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Soft Modeling and H. Wold 

In  the  50’s  Thurston  meets  Herman  Wold  meets  Louis  Thurstone.  They 
decide to co-organize  “the Upspsala Symposium on Psycological  Factor 
Analysis”. Since then, H. Wold started working on Latent Variables models.

In  1975,  H.  Wold  extended  the  basic  principles  of  an  iterative  algorithm 
aimed to the estimation of the PCs (NIPALS) to a more general procedure for 
the  estimation of  relations  among several  blocks of  variables  linked by a 
network of relations specified by a path diagram.

The  PLS  Path  Modeling  was  proposed  to  estimate  Structural  Equation 
Models  (SEM)  parameters,  as  a  Soft  Modeling  alternative  to  Jöreskog's 
Covariance Structure Analysis
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Herman Wold (December 25, 1908 – February 16, 1992)
Econometrician and Statistician
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Two families of methods 

The aim is to reproduce the sample covariance 
matrix of the manifest variables by means of the 
model parameters: 
•  the implied covariance matrix of the manifest 
variables is a function of the model parameters
•  it is a confirmatory approach aimed at 
validating a model (theory building)

The aim is to provide an estimate of the latent 
variable scores in such a way that they are the most 
correlated with one another (according to path 
diagram structure) and the most representative of 
each corresponding block of manifest variables.
•  latent variable score estimation plays a main role
•  it is more an exploratory approach, than a 
confirmatory one (operational model strategy)

SEM

Covariance-based
Methods

Component-based
Methods
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From Path Analysis to SEM 
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SEM: drawing conventions 

or 

or 

or 

or 

Latent Variables (LV) 

Manifest Variables (VM) 

Unidirectional Path 
(cause-effect) 

Bidirectional Path 
(correlation) 

Feedback relation or 
reciprocal causation 

or or ε εε

η η

x x

Errors 

G. Russolillo – slide  13 



The PLS approach to CB-LVPM  – Antwerp, Belgium, 29th April 2016 

Structural Equation models: notation 
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Greek characters are used to refer to Latent Variables: 

Latin characters refer to Manifest Variables 

J= #  exogenous Latent 
Variables (LV) 

  

€ 

x i =

x1

xp

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

(

ξi =

ξ1

ξJ

!

"

#
#
#
#

$

%

&
&
&
&

'

P= # exogenous MV 
 

yi =
y1
!
yQ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′

Q= # endogenous MV 

M= #  endogenous Latent 
Variables (LV) 

ηi =

η1

ηM

!

"

#
#
#
#

$

%

&
&
&
&

'
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“Drawing” a regression model 

The multiple regression model (on centred variables) :
 

y = β1x1 + β2x2 + ζ 

can be “drawn” by using a Path Diagram:

x1

x2

y

ζ 

Example: The Value for a brand in terms of Quality and Cost

The error is an  
Unobserved / Latent variable 

Value, is an Observed / Manifest Variable

Quality and Cost  
are Observed / 
Manifest Variables

γ2 

γ1 
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Path Models with Manifest Variables 

x1 

ζ1 

y2 y1 

ζ2 

γ11 β21 

y1 = γ11 x1 + ζ1  

y2 = β21 y1 + ζ2  

y = Γx +Βy +ζ
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The  multiple  regression  model  can  be  generalized  to  paths  where 
endogenous variables are on their turn causative of others endogenous 
variables.

Γ =
γ 11
0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

# endo # exo 

Β = 0 0
β21 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

# endo # endo 

ζ =
ζ1
ζ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

# endo 

y =
y1
y2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

# endo 

x = x1[ ]
# exo 
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Path Models with Manifest Variables 

y1 = γ11 x1 + γ12 x2 + ζ1  

y2 = β21 y1 + ζ2  

y = Γx +Βy +ζ

x1 

ζ1 

y2 y1 

ζ2 
γ11 

β21 

x2 
γ12 

y = I −B( )−1 Γx +ζ( )
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Γ =
γ 11 γ 12
0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

# endo # exo 

x =
x1
x2

⎡

⎣
⎢

⎤

⎦
⎥

# exo 

y =
y1
y2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

# endo 

Β = 0 0
β21 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

# endo # endo 

ζ =
ζ1
ζ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

# endo 
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Analysing covariance structures of Path models 
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� 

Σ =
Σxx

Σyx Σyy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Population Covariance matrix 

C = Σ Ω( ) = Σ Γ,B,Ψ( )
Path Coefficients Structural Error Covariance

x1 

ζ1 

y2 y1 

ζ2 
γ11 

β21 

x2 
γ12 

Assuming that:
i) the MVs are centered
ii) Two structural errors do not covariate
iv) The covariance between structural error and exogenous MVs is equal to zero

We can write the covariance matrix among the MVs in terms of model parameters 
(implied covariance matrix):  
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Path model implied covariance matrix 
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Population Covariance matrix 

“Implied” covariance matrix 

Empirical covariance matrix 
� 

Σ =
Σxx

Σyx Σyy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

� 

S =
sxx
syx syy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

€ 

C ≈ S ≈ Σ

C = Σ Ω( ) =
Σ xx

I−B( )−1ΓΣ xx I−B( )−1 ΓΣ xx ′Γ +Ψ( ) I−B( )−1′
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
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Confirmatory Single Factor Model 

x1 = λ11 ξ1 + δ1

x2 = λ21 ξ1 + δ2 

x3 = λ31 ξ1 + δ3 

x =
x1
x2
x3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Λ x =
λ11
λ21
λ31

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

δ =
δ1
δ2
δ3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ξ = ξ1[ ]

x = Λ xξ +δ

x3 x2 x1 

ξ1 

δ2 δ1 δ3 

λ11 λ21 
λ31 
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Factor 
Loading 

Unique 
Factor 

Common 
Factor 
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Multiple Confirmatory Factor Model 
x1 = λ11 ξ1 + δ1 ,
x2 = λ21 ξ1 + λ22 ξ2 + δ2 
x3 = λ31 ξ1 + δ3 
x4 = λ42 ξ2 + δ4

x5 = λ52 ξ2 + δ5 
x6 = λ62 ξ2 + δ6

  

€ 

x =

x1

x6

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

Λ x =

λ11 0

λ21 λ22
λ31 0

0 λ42
0 λ52
0 λ62

"

#

$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'

  

€ 

δ =

δ1

δ6

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

€ 

ξ =
ξ1
ξ2

# 

$ 
% 
& 

' 
( 

€ 

x = Λxξ + δ

x4 x3 x5 x6 x2 x1 

ξ1 ξ2 

δ1 δ2 δ3 δ4 δ5 δ6 

λ11 λ21 
λ31 

λ22 

λ42 λ52 

λ62 
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Analysing covariance structures in CF models 
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C = Σ Ω( ) = Σ Λ,Φ,Θ( )
Loadings LV Covariance Measurement Error Covariance

Assuming that:

i)  the MVs, the LV and the errors are centered

ii)  Measurement errors and LVs do not covariate

We can write the covariance matrix among the MVs in terms of model parameters 
(implied covariance matrix):  

x4 x3 x5 x6 x2 x1 

ξ1 ξ2 

δ1 δ2 δ3 δ4 δ5 δ6 

λ11 λ21 
λ31 

λ42 λ52 

λ62 

ϕ12

θ  12



The PLS approach to CB-LVPM  – Antwerp, Belgium, 29th April 2016 

Analysing covariance structures in CF models 

Σ Ω( ) = E(x ′x ) = E Λξ +δ( ) Λξ +δ( )′⎡
⎣⎢

⎤
⎦⎥
=

= E Λξ +δ( ) ′ξ ′Λ + ′δ( )⎡⎣ ⎤⎦ =

= ΛE(ξ ′ξ ) ′Λ + Λ E(ξ ′δ )+ E(δ ′ξ ) ′Λ + E(δ ′δ )

The covariance matrix of the MVs can be rewritten in terms of model 
parameters:

Σ Ω( ) = ΛΦΛ ' +Θ

� 

x = Λxξ + δ

E ξξ '( ) = Φ

E δδ '( ) =Θ
let 

Confirmative factor model :

G. Russolillo – slide  23 



The PLS approach to CB-LVPM  – Antwerp, Belgium, 29th April 2016 

Path model with latent variables 

ξ1 

η2 

η1 

x1 

x2 

x3 

y1 

y3 

y2 

y4 

y5 

y6 

y7 

Structural Model or inner model

Measurement Model or outer model

Path 
Coefficients

γ21  

β21 

λx21 

λx31 

Loadings

δ1

ε3ζ2 

γ11 

ζ1 

λy11 

λy21 

ε4

ε5

ε6

ε7

δ2

δ3

ε1

ε2

λx11 

λy32 λy42 

λy52 
λy62 λy72 

Loadings
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x1 = λx
11 ξ1 + δ1 

x2 = λx
21 ξ1 + δ2 

x3 = λx
31 ξ1 + δ3 

x =
x1
x2
x3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
Λx =

λ
11

x

λ
21

x

λ
31

x

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

δ =
δ1
δ 2
δ 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

� 

ξ = ξ1[ ]

� 

x = Λxξ + δ

For the exogenous MVs
ξ1 

x1 

x2 

x3 

λx21 

λx31 

δ1

δ2

δ3

λx11 

The measurement (outer) model 
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The measurement (outer) model 

x = Λ xξ +δ

For the exogenous MVs (A reflective scheme must hold)
 

Vector of the 
exogenous MVs

RECTANGULAR matrix with the 
loadings linking each exogenous MV to 
the corresponding exogenous LV

Vector of the 
exogenous LVs

Vector of the measurement 
errors associated to the 
exogenous MVs
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y3 

η2 

η1 

y1 

y2 

y4 

y5 

y6 

y7 

ε3

λy 11 

λy 21 

ε4

ε5

ε6

ε7

ε1

ε2

λy32 
λy42 

λy62 λy72 

λy52 

y =

y1
y2
y3
y4
y5
y6
y7

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

ε =

ε1
ε2
ε3
ε4
ε5
ε6
ε7

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

η =
η1
η2

⎡

⎣
⎢

⎤

⎦
⎥Λy =

λ11 0
λ21

0
0
0
0
0

 0
λ32

λ42

λ52

λ62

λ72

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

y = Λ yη +ε

For the endogenous MVs y3 

y1 = λ y11η1 + ε1
y2 = λ y21η1 + ε2
y3 = λ y32η2 + ε3
y4 = λ y42η2 + ε4
y5 = λ y52η2 + ε5
y6 = λ y62η2 + ε6
y7 = λ y72η2 + ε7

The measurement (outer) model 
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ξ1 

η2 

η1 

γ21  

β21 

ζ2 

γ11 

ζ1 

η1 = γ11 ξ1 + ζ1 
η2 = γ21 ξ1 + β21η 1 + ζ2 

Γ =
γ 11
γ 21

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Β =

0 0
β21 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

η = Γξ +Βη +ζ

ζ =
ζ1
ζ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

η =
η1
η2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ξ = ξ1[ ]

The structural (inner) model 
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The structural (inner) model 

Vector of the 
endogenous LVs

Vector of the errors 
associated to the 
endogenous LVs

Vector of the 
exogenous LVs

� 

η = Γξ + Βη + ζ

Path-coefficients Matrix: it is a  SQUARED 
matrix with the path coefficients of the 
endogenous LVs. On the diagonal there are 
only zeros

Path-coefficients Matrix: it is a  
RECTANGULAR matrix with the 
path coefficients of the exogenous 
LVs.
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The Structural Equation Model 

� 

η = Γξ + Βη + ζ

ξ1 

η2 

η1 

x1 

x2 

x3 

y1 

y3 

y2 

y4 

y5 

y6 

y7 

ε1 

ε2 

δ2 

δ1 

ε3 ζ2 ε4 

ε5 

ε6 

ε7 

δ3 

ζ1 

� 

y = Λyη + ε

� 

x = Λxξ + δ

� 

η = I−B( )−1 Γξ + ζ( )

Measurement Models 

Structural Model 
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Model assumptions 

ξ1 

η2 

η1 

x1 

x2 

x3 

y1 

y3 

y2 

y4 

y5 

y6 

y7 

ε1 

ε2 

δ2 

δ1 

ε3 ζ2 ε4 

ε5 

ε6 

ε7 

δ3 

ζ1 

� 

y = Λyη + ε

� 

x = Λxξ + δ

� 

η = I−B( )−1 Γξ + ζ( )

Assuming that:

i) the MVs, the LV and the errors (both in structural and measurement models) are 
centered

ii) Two errors of different type (structural, exogenous measurement and 
endogenous measurement) do not covariate

iii) Measurement errors and LVs do not covariate

iv) The covariance between structural error and exogenous LVs is equal to zero
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� 

y = Λyη + ε

� 

x = Λxξ + δ

� 

η = I−B( )−1 Γξ + ζ( )

� 

E x( ) = 0, E y( ) = 0, E ξ( ) = 0, E η( ) = 0, E δ( ) = 0, E ε( ) = 0, E ζ( ) = 0

� 

 E δ ′ ε ( ) = 0, E ζ ′ δ ( )( ) = 0, E ζ ′ ε ( ) = 0

� 

E δ ′ ξ ( ) = 0, E δ ′ η ( ) = 0, E ε ′ ξ ( ) = 0, E ε ′ η ( ) = 0

� 

E ζ ′ ξ ( ) = 0

ξ1 

η2 

η1 

x1 

x2 

x3 

y1 

y3 

y2 

y4 

y5 

y6 

y7 

ε1 

ε2 

δ2 

δ1 

ε3 ζ2 ε4 

ε5 

ε6 

ε7 

δ3 

ζ1 

Hypotheses on 
Expectations 

Hypotheses on  
Correlations 
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We can write the covariance matrix among the MVs in terms of 
model parameters (implied covariance matrix)  
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Analysing the covariance 

� 

Σ =
Σxx

Σyx Σyy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

ξ1 

η2 

η1 

x1 

x2 

x3 

y1 

y3 

y2 

y4 

y5 

y6 

y7 

ε1 

ε2 

δ2 

δ1 

ε3 
ζ2 ε4 

ε5 

ε6 

ε7 

δ3 

ζ1 

Population Covariance matrix 

C = Σ Ω( ) = Σ Γ,B,Λ x,Λ y,Φ,Ψ,Θδ,Θε( )

Path Coefficients Loadings Exog. LV 
Covariance

Measurement 
Error 
Covariance

Structural 
Error 
Covariance
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Σ Ω( ) =
ΛxΦΛ 'x+Θδ

Λy I−B( )−1Γ ′Φ Λ 'x Λy I−B( )−1 ΓΦ ′Γ +Ψ( ) I−B( )−1′⎡
⎣⎢

⎤
⎦⎥
Λ 'y+Θε

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Implied Covariance matrix Σ(Ω) 

� 

Σ =
Σxx

Σyx Σyy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

It can be rewritten as a function of model parameters 

Covariance matrix of the population

Covariance matrix of the population implied by the model
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Analysing the covariance 

Population Covariance matrix 

“Implied” covariance matrix 

Empirical covariance matrix 
� 

Σ =
Σxx

Σyx Σyy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

� 

S =
sxx
syx syy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

€ 

C ≈ S ≈ Σ

C = Σ Ω( ) =
Λ xΦΛ 'x+Θδ

Λ y I−B( )−1Γ (ΦΛ 'x Λ y I−B( )−1 ΓΦ (Γ +Ψ( ) I−B( )−1(
*
+,

-
./
Λ 'y+Θε

*

+

,
,
,

-

.

/
/
/
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To summarize 
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ξ1 

η2 

η1 

x1 

x2 

x3 

y1 

y3 

y2 

y4 

y5 

y6 

y7 

ε1 

ε2 

δ2 

δ1 

ε3 ζ2 
ε4 

ε5 

ε6 

ε7 

δ3 

ζ1 

x4 x3 x5 x6 x2 x1 

ξ1 ξ2 

δ1 δ2 δ3 δ4 δ5 δ6 

x1

x2

y

ζ 

Path Analysis with 
Manifest Variables Confirmatory Factor Model 

Path Analysis with Latent Variables 
 (Structural Equation Model) 
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F = f S −Σ Ω̂( )( )

Estimation minimizes some discrepancy function between the 
implied covariance matrix and the observed one. 

Estimated covariance matrix
Σ Ω̂( ) =C =

Λ̂ xΦ̂Λ̂ 'x+ Θ̂δ

Λ̂ y I − B̂( )−1 Γ̂ ′Φ̂ Λ̂ 'x Λ̂ y I − B̂( )−1 Γ̂Φ̂ ′Γ̂ + Ψ̂( ) I − B̂( )−1'⎡
⎣⎢

⎤
⎦⎥Λ̂ 'y+ Θ̂ε

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Discrepancy function 
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Main discrepancy function for estimation 
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FML = log C + tr SC−1( )− log S − P +Q( )
Maximum Likelihood 

 Assumptions:   
à  data are multinormal 
à  S follows a Wishart distribution 
à Both S and C are positive-definite 

Properties of the ML estimators:   
-  Asymptotically unbiased 
-  Consistent 
-  Asymptotically efficient 
-  The distribution of the ML estimators approximates a normal 

distribution as sample size increases  
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Alternative discrepancy functions 
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FGLS =

1
2

tr W−1 S - C( )2⎡
⎣⎢

⎤
⎦⎥

Generalised Least Squares

( )21
2ULSF tr ⎡ ⎤= ⎣ ⎦S -C

Unweighted Least Squares

( ) ( )T 1
/ADF WLSF −= − −s c W s c

Asymptotically Distribution Free
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Model identification 
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Model identifiability and Degrees of freedom 

A model is identifiable if its parameters are uniquely determined.

    DF = # equations (knowns) - # parameters to be estimated (unknowns)
Degrees of freedom (DF)

Model identification condition:
DF≥ 0

This is a necessary (but not sufficient) condition
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Identifiability
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Perfect Identification:

à DF ( # equations - # parameters)  = 0

A perfectly identified model yields a trivially perfect fit, making the 
test of fit uninteresting.

Overidentification:

à DF ( # equations - # parameters)  >  0

A model is overidentified if  there are more knowns than unknowns. 
Overidentified models  may not  fit  well  and this  is  their interesting 
feature. 

Some consideration on model identification 
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Model identification in SEM 

Necessary (but not sufficient) condition

T-rule: A SEM is identified if the covariance matrix may be uniquely 
decomposed in function of the model parameters   
à if its DF  ≥ 0, the number of covariances is larger than the number of 
parameters to be estimated: the model is potentially identifiable
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DF = 1
2
P +Q( ) P +Q +1( ) − t⎡

⎣⎢
⎤
⎦⎥

# of parameters to be 
estimated

# of MVs in the model:
P = # of exogenous MVs

Q = # of endogenous MVs  

1
2
P +Q( ) P +Q +1( ) Number of unique elements in the Σ matrix
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Model fit and validation 
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Overall model fit measures 
Chi-square Test - Global Validation Tests
H0 : Σ = C  è  Good fit
H1 : Σ ≠ C

Decision Rule: 
The model is accepted if  p-value ≥  0.05 (We cannot reject the hypothesis H0) 
or if Chi-square/DF ≤ 2  (or other thresholds such as 3 or 5)

N.B.: For a fixed level of differences in covariance matrices,                        
the estimate of the Chi-square increases with N

The power (i.e. the probability of rejecting a false H0) depends on the 
sample size. If the sample size is important, this test may lead to 
reject the model even if the data fit well the model!
We cannot use this test to compare model estimated on different sample size 

 N −1( )F ∼ χDF
2

Test Statistic
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Indices based on a baseline model 

The SATURATED Model: 
This model contains as many parameter estimates as there are available degrees 
of freedom or inputs into the analysis. Therefore, this model shows 0 degrees of 
freedom. [This is the least restricted model possible] 
 
 
The INDEPENDENCE Model: 
This model contains estimates of the variance of the observed variables only. In 
other words, it assumes all relationships between the observed variables are zero 
(uncorrelated), no theoretical relationships. Therefore, this model shows the 
maximum number of degrees of freedom. [This is the most restrictive model 
possible and ANY TEST SHALL ALWAYS LEAD TO ITS REJECTION] 
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Model Comparison 
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Independence vs Saturated model 
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INDEPENDENCE 
Model: 

SATURATED 
Model: 

FIT = max 
DF = 0 
N_PAR = max 
N_CONSTR = min 
CHI2 = 0 
P-value = max 

FIT = min 
DF = max 
N_PAR = min 
N_CONSTR = max 
CHI2 = max 
P-value = min 
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Indices based on a baseline model 

This index was initially devised by Joreskog and Sorbom (1984) for ML 
and ULS estimation. It has then been generalised to other estimation 
criteria.

1
IND

FGFI
F

= −

Fit function that would results if all parameters were zero 
(fit function of the INDEPENDENCE Model) 

If a model is able to explain any true covariance between the 
observed variables, then F/FIND would be 0 à GFI=1

The model is accepted if GFI is at least 0.9

Goodness-of-Fit Index (GFI) 
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PLS-Path Modeling 
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PLS Path Modeling: notations 

•   P manifest variables (MVs )observed on n units 

 
 

•   Q latent variables  (LVs) 

•   Q blocks composed by each LV and the corresponding MVs 

N.B. Greek characters are used to refer to Latent Variables 
   Latin characters refer to Manifest Variables 

ξq  generic LV 

xpq generic MV 

€ 

pq
q=1

Q

∑ = Pin each q-th block pq manifest variables xpq , with  
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ξ1 

ξ3 

ξ2 

x11 

x21 

x31 

x12 

x13 

x22 

x23 

x33 

x43 

x53 

Inner or Structural model 
Outer or Measurement model 

Path 
Coefficients 

β1  

β2 λ12 

λ22 

External 
Weights 

δ31  

δ11  

δ21  

ε12  

ε22  

ε13  

ε23  

ε33  

ε43  

ε53  

PLS Path Modeling: notation 
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The structural model describes the 
relations among the latent variables 

ξq* = β jq*ξ j +ζq*
j=1

J

∑

where: 
- Βjq* is the path-coefficient linking the j-th LV to the q*-th endogenous LV 
- J is the number of the explanatory LVs impacting on ξq* 

ξ1 

ξ3 

ξ2 

For each endogenous LV in the model it can be written as: 

β13 

β23 

ζ3 

PLS Path Model Equations: inner model 
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x pq = λpqξq + εpq

Latent Construct  
ξ q 

x1q x2q x3q x4q 

λ1q λ2q λ3q 
λ4q 

The measurement model describes the 
relations among the manifest variables 
and the corresponding latent variable. 
 

For each MV in the model it can be written as: 

where: 
- lpq is a loading term linking the q-th LV to the p-th MV 

PLS Path Model Equations: inner model 
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In component-based approach a weight relation defines each 
latent variable score as a weighted aggregate of its own MVs: 

 
 

ξq =Xqwq 

Weight relation – Linear composite  
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PLS-PM Algorithm 
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1)   Computation of the outer weights 

2)   Computation of the LV scores (composites) 

3)   Estimation of the path coefficients 

4)   Estimation of the loadings 

Latent variable scores are obtained as weighted aggregates of their own MVs:  

Loadings are estimated as regression coefficients according to the measurement model  

Outer weights wq  are obtained by means of an iterative algorithm based on alternating LV 
estimations in the structural and in the measurement models 

Path coefficients are estimated as regression coefficients according to the structural model  

PLS-PM approach in 4 steps 
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ξ̂q ∝Xqwq
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PLS Path Model: the algorithm 

G. Russolillo – slide  57 

The aim of the PLS-PM algorithm is to define a system of weights 
to be applied at each block of MVs in order to estimate the 
corresponding LV, according to the weight relation: 

This goal is achieved by means of an iterative algorithm based on 
two main steps: 
 - the outer estimation step 
     à Latent Variable proxies = weighted aggregates of MVs 

 - the inner estimation step  
    àLatent Variable proxies = weighted aggregates of connected LVs 

  

ξ̂q ∝Xqwq
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A focus on the Outer Estimation 
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External (Outer) Estimation 
Composites = weighted aggregates of manifest variables 

 tq  = Xqwq  
 

Mode A (for outwards directed links – reflective – principal factor model): 
wpq =(1/n) xpq

Tzq 
è  These indicators should covary 
è  Several simple OLS regressions 
è  Explained Variance (higher AVE, communality) 
è  Internal Consistency 
è  Stability of results with well-defined blocks 
 

Mode B (for inwards directed links – formative – composite LV): 
wq = (Xq

TXq)-1Xq
Tzq 

è  These indicators should covary 
è  One multiple OLS regression (multicollinearity?) 
è  Structural Predictions (higher R2 values for endogenous LVs) 
è  Multidimensionality (even partial, by sub-blocks) 
è  Might incur in unstable results with ill-defined blocks 
 

Latent Construct  

x1q x2q x3q x4q 

Emergent 
Construct  

x1q x2q x3q x4q 
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Latent or Emergent Constructs? 
Latent 

Construct 
Emergent 
Construct 

Reflective (or Effects)  Indicators Formative (or Causal) Indicators 

e.g. Consumer’s attitudes, feelings 
 

•  Constructs give rise to observed variables 
(unique causeè unidimensional) 

•  Aim at accounting for observed 
variances or covariances 

•  These indicators should covary: changes 
in one indicator imply changes in the 
others. 

•  Internal consistency is measured          
(es. Cronbach’s alpha) 

e.g. Social Status, Perceptions 
 

•  Constructs are combinations of 
observed variables(multidimensional) 

•  Not designed to account for observed 
variables 

•  These indicators need not covary: 
changes in one indicator do not imply 
changes in the others. 

•  Measures of internal consistency do not 
apply. 

x1q x2q x3q x4q x1q x2q x3q x4q 
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A focus on Inner Estimation 
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Inner Estimation 
Latent Variable proxies = weighted aggregates of connected LVs 

  
 
 

 zq ∝ eqq 'tq '
q '
∑

t1 

t2 

t3 t4 

2.  Factorial scheme: z3 = cor(t3,t1)* t1 + cor(t3,t2 )* t2 + cor(t3,t4 )* t4

1.  Centroid scheme:    
z3 = e13t1 + e23t2 + e43t4    where eqq ' = sign(cor(tq ,tq ' ))

   z3 = γ̂ 31 × t1 + γ̂ 32 × t2 + cor(t3,t4 )× t4
3.  Path weighting scheme : 

      Where the betas are the regression coeddicients of the model:   t3 = γ 31 × t1 + γ 32 × t2 +δ
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wq  
Initial 
step 

tq=±Xqwq  

tq2 

tq1 

tqq 

zq 



eq1 

eq2 

eqq 

Mode A: wq = (1/n)Xq´zq  
Mode B: wq = (Xq´Xq)-1Xq´zq  

Choice of weights eqq’: 
- Centroid: correlation signs 
- Factorial: correlations 
-  Path weighting scheme: multiple regression 
coefficients or correlations 

Update weights 
W 

Reiterate till 
Numerical 

Convergence 

Outer 
estimation 

Inner 
estimation 

The PLS Path Modeling algorithm 
MVs are centered or standardized 
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PLS-PM Criteria  
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Xqwq

2
= n

Full Mode B PLS-PM 
 Glang (1988) and Mathes (1993) showed that the stationary equation of a 

“full mode B” PLS-PM solves this optimization criterion:  
 

argmax
wq

cqq '
q≠q '
∑ g cov Xqwq,Xq 'wq '( )( )⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

g = square
abolute value

(Factorial scheme)
(Centroid scheme)

!
"
#

$#
cqq ' =

1     if Xq  and Xq '  is connected
0    otherwise

!
"
#

where: 

Hanafi (2007) proved that PLS-PM iterative algorithm is 
monotonically convergent to these criteria 

s.t. 

Optimization Criteria behind the PLS-PM 
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Full Mode A PLS-PM 
 Kramer (2007) showed that “full Mode A” PLS-PM algorithm is not based on a 
stationary equation related to the optimization of a twice differentiable function  

Full NEW Mode A PLS-PM 
 In 2007 Kramer showed also that a slightly adjusted PLS-PM iterative 
algorithm (in which a normalization constraint is put on outer weights rather 
than latent variable scores) we obtain a stationary point of the following 
optimization problem: 

argmax
wq

2
=n

cqq '
q≠q '
∑ g cov Xqwq ,Xq 'wq '( )( )⎧

⎨
⎩⎪

⎫
⎬
⎭⎪

Optimization Criteria behind PLS-PM 

G. Russolillo – slide  64 

Tenenhaus and Tenenhaus (2011) proved that the modified algorithm 
proposed by Kramer is monotonically convergent to this criterion. 
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Optimization Criteria behind PLS-PM 
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s.t. Xqwq

2
= n  if Mode B for block q

wq

2
= n  if New Mode A for block q

argmax
wq

cqq '
q≠q '
∑ g cov Xqwq,Xq 'wq '( )( )
#
$
%

&%

'
(
%

)%
=

argmax
wq

cqq 'g cor Xqwq,Xq 'wq '( ) var Xqwq( ) var Xq 'wq '( )*
+,

-
./

q≠q '
∑
#
$
%

&%

'
(
%

)%

A general criterion for PLS-PM, in which (New) Mode A and B are mixed, can 
be written as follows: 
 

The empirical evidence shows that Mode A (unknown) criterion is approximated 
by the New Mode A criterion 
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PLS-PM as a general framework for 
data analysis 
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PLS-PM SPECIAL CASES  

•  Principal component analysis
•  Multiple factor analysis
•  Canonical correlation analysis
•  Redundancy analysis
•  PLS Regression
•  Generalized canonical correlation analysis (Horst)
•  Generalized canonical correlation analysis (Carroll)
•  Multiple Co-inertia Analysis (MCOA) (Chessel & Hanafi, 1996)
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One block case 

Principal Component Analysis through PLS-PM* 
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Component Matrixa

.648

.729

.823

.830

VVLT1

VVLT2

VVLT3

VVLT4

1
Component

Extraction Method: Principal Component Analysis.
1 components extracted.a. 

SPSS results  
(principal components) 

XL-STAT graphical results 

* Results from W.W. Chin slides on PLS-PM 

Component Matrixa

.869

.919

.938

.920

VCPT1

VCPT2

VCPT3

VCPT4

1
Component

 Principal Component Analysis.
1 components extracted.a. 
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Two block case 
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Tucker Inter-batteries Analysis 
(1st component) 

X1 ξ1 ξ2
X2 

Mode A for X1, Mode A for X2 

Canonical Correlation Analysis 
(1st component) 

X1 ξ1 ξ2
X2 

Mode B for X1, Mode B for X2 

Redundancy Analysis 
(1st component) 

X1 ξ1 ξ2
X2 

Mode B for X1, Mode A for X2 

argmax
w1 = w2 =1

cov X1w1,X2w2( ){ }

argmax
var X1w1( )=var X2w2( )=1

cov X1w1,X2w2( ){ }

argmax
var X1w1( )= w2 =1

cov X1w1,X2w2( ){ }
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Hierarchical Models 
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X1

XK 

. 

. 

. 

ξ1

ξK

ξ

X1 

. 

. 

. 

XK 

X 

Mode A + Path Weighting
-  Lohmöller’s Split PCA
-  Multiple Factorial Analysis by Escofier and Pagès
-  Horst’s Maximum Variance Algorithm
-  Multiple Co-Inertia Analysis (ACOM) by Chessel and Hanafi 

Mode B + Centroid
-  Generalised CCA (Horst’s SUMCOR criterion)
-  Mathes (1993) & Hanafi (2004) 

Mode B + Factorial
-  Generalised Canonical Correlation Analysis (Carroll) argmax

var Xkwk( )=1,Xw= Xkwkk∑
cor Xkwk ,Xw( )

k∑{ }
argmax

var Xkwk( )=1,Xw= Xkwkk∑
cor2 Xkwk,Xw( )k∑{ }

argmax
var Xkwk( )=1,Xw= Xkwkk∑

cov2 Xkwk ,Xw( )k∑{ }
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‘Confirmatory’ PLS Model  
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. 

. 

. 
X2 ξ1

ξ3 X3 

. 

. 

. 
X2 ξ2

ξ4 X4 

Each LV is connected to all the others 
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PLS criteria for multiple table analysis 
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From Tenenhaus et Hanafi (2010) 

Fk = Xkwk,F = Xw( )
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PLS criteria for multiple table analysis 
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From Tenenhaus et Hanafi (2010) 
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Model Assessment  
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Reliability 

The reliability rel(xpq) of a measure xpq of a true score ξq modeled as
xpq= λpξq + δpq is defined as: 

rel xpq( ) =
λpq
2 var ξq( )
var xpq( )

= cor2 xpq ,ξq( )

rel(xpq) can be interpreted as the variance of xpq that is explained by ξq
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Measuring the Reliability 

Question:
How to measure the overall reliability of the measurement tool ?
In other words, how to measure the homogeneity level of a block Xq of 
positively correlated variables? 

Answer:
The composite reliability (internal consistency) of manifest variables 
can be checked using:
•  the Cronbach’s Alpha
•  the Dillon Goldstein rho
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Composite reliability 
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The measurement model (in a reflective scheme) assumes that each group of 
manifest  variables  is  homogeneous  and  unidimensional  (related  to  a  single 
variable). The composite reliability (internal consistency or homogeneity of a 
block) of manifest variables is measured by either of the following indices:

Where: 
-  xpq is the p-th manifest variable in the block q,
-  Pq is the number of manifest variables in the block,
-  λpq is the component loading for xpq
-  var(εpq) is the variance of the measurement error
- MVs are standardized

The manifest variables are reliable if these indices are at least 0.7
(0.6 to 0.8 according to exploratory vs. confirmatory purpose)

Cronbach’s alpha assumes lambda-equivalence (parallelity) and is a lower bound estimate 
of reliability

  

α q =
Pq

Pq −1( )
cov xpq ,xp 'q( )p≠ p '∑

Pq + cov xpq ,xp 'q( )p≠ p '∑
ρq =

λpqp∑( )2 × var ξq( )
λpqp∑( )2 × var ξq( )+ var ε pq( )p∑
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Average Variance Extracted (AVE) 
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The goodness of measurement model (reliability of latent variables) 
is  evaluated by the  amount  of  variance that  a  LV captures  from its 
indicators  (average  communality)  relative  to  the  amount  due  to 
measurement error.

•  The convergent validity holds if AVE is >0.5 
•  Consider also standardised loadings >0.707

  

Average Variance Extracted

  

AVEq =
λ pq

2 var ξq( )⎡
⎣

⎤
⎦p∑

λ pq
2 var ξq( )⎡

⎣
⎤
⎦p∑ + 1− λ pq

2( )q∑
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What if unidimensionality is rejected? 

G. Russolillo – slide  79 

Four possible solutions:

•   Remove manifest variables that are far from the model

•   Change  the  measurement  model  into  a  formative  model  (eventual 
multicollinearity problems -> via PLS Regression)

•   Use the auxiliary variable in the multiple table analysis of unidimensional 
sub-blocks:
 

X1 

XK 

. 

. 

. 

x1 

xK 

x 

X1 

. 

. 

. 

XK 

X 

•   Split the multidimensional block into unidimensional sub-blocks
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Discriminant and Nomological Validity  

 G. Russolillo – slide  80 

The latent variables shall  be correlated (nomological  validity) but they need to 
measure  different  concepts  (discriminant  validity).  It  must  be  possible  to 
discriminate between latent variables if they are meant to refer to distinct concepts.

The correlation between two latent variables is tested to be significantly lower than 1 
(discriminant validity) and significantly higher than 0 (nomological validity):
Decision Rules:
The null hypotheses are rejected if:
1.  95% confidence interval for the mentioned correlation does not comprise 1 and 0, 

respectively (bootstrap/jackknife empirical confidence intervals);
2.  For discriminant validty only: (AVEq and AVEq’) >                        which indicates 

that more variance is shared between the LV and its block of indicators than with 
another LV representing a different block of indicators.

cor2 ξ̂q ,ξ̂q '( )

H0 : cor ξq ,ξq '( ) =1 H0 : cor ξq ,ξq '( ) = 0
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Model Assessement 

G. Russolillo – slide  81 

Since PLS-PM is a Soft Modeling approach, model validation regards only the way 
relations are modeled, in both the structural and the measurement model; in particular, 
the following null hypotheses should be rejected:

a)  λpq = 0, as each MV is supposed to be correlated to its corresponding LV;

b)  wpq = 0, as each LV is supposed to be affected by all the MVs of its block;

c)  βqq’ = 0, as each latent predictor is assumed to be explanatory with respect to its 
latent response;

d)  R2
q* = 0, as each endogenous LV is assumed to be explained by its latent predictors;

e)  cor(ξq; ξq’) = 0, as LVs are assumed to be connected by a statistically significant 
correlation. Rejecting this hypothesis means assessing the Nomological Validity of 
the PLS Path Model;

f)  cor(ξq; ξq’) = 1, as LVs are assumed to measure concepts that are different from one 
another. Rejecting this hypothesis means assessing the Discriminant Validity of the 
PLS Path Model;

g)  Both AVEq and AVEq’ smaller than cor2(ξq; ξq’), as a LV should be related more 
strongly with its block of indicators than with another LV representing a different 
block of indicators.
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Model Quality  

G. Russolillo – slide  82 
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Communality 

G. Russolillo – slide  83 

Comq =
1
pq

cor2 x pq,ξq( )
p=1

pq

∑ ξq 

x1q 

x2q 

x3q 

The communality of a block is the mean of the communalities of its MVs

For  each  manifest  variable  xpq  the  communality  is  a  squared 
correlation:

Compq = cor
2 x pq ,ξq( )

  

Com =
pq ×Comq( )q:Pq>1∑

Pqq:Pq>1∑

The communality of the whole model is the Mean Communality, 
obtained as:

(NB: if standardised MVs: Comq = AVEq)
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Redundancy 

G. Russolillo – slide  84 

Redundancy is the average variance of the MVs set, related to the J* 
endogenous LVs, explained by the exogenous  LVs:

ξ1 

ξ3 

ξ2 

x1 

x2 

x3 

x4 

x6 

x5 

x7 

x8 

x9 

x10 

Redundancyq* = R2 ξq*,ξq: ξq→ ξq*( )×Communalityq*

  
REDxpq*

=
Var βqq*ξq

⎡⎣ ⎤⎦
Var xpq*

⎡⎣ ⎤⎦
λ pq*

2
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CV-communality and redundancy  

G. Russolillo – slide  85 

The Stone-Geisser  test  follows a blindfolding procedure:  repeated (for  all  data points) 
omission of  a  part  of  the data  matrix  (by row and column,  where jackknife  proceeds 
exclusively by row) while estimating parameters, and then reconstruction of the omitted part 
by the estimated parameters.

This procedure results in:
-  a generalized cross-validation measure that,  in case of a negative value,  implies a bad 
estimation of the related block
-  « jackknife standard deviations » of parameters (but most often these standard deviations 
are very small and lead to significant parameters)

The mean of the CV-communality and the CV-redundancy (for endogenous blocks) indices can be 
used to measure the global quality of the measurement model if they are positive for all blocks 
(endogenous for redundancy).

   Communality Option             Redundancy Option (also called Q2) 

Hq
2 =1−

(x pqi -x pq -λ̂pq -i( )ξ̂q -i( ))
2

i
∑

q
∑

(x pqi -x pq )
2

i
∑

q
∑

  Fq
2 =1−

( x pqi -x pq -λ̂pq -i( )Pred(ξ̂q(-i) ))
2

i
∑

q
∑

(x pqi -x pq )
2

i
∑

q
∑
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X 
X 

X 
X 

X 
X 

Blindfolding procedure 

From W.W. Chin’s slides on PLS-PM 
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2 3 4

14 1513

n - 6 n - 4n - 7

n - 2 n - 1n - 3

7 85

10 129
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Blindfolding procedure 

From W.W. Chin’s slides on PLS-PM 
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A global quality index for PLS-PM 

G. Russolillo – slide  88 

•  PLS-PM does not optimize one single criterion, instead it is very flexible as 
it  can  optimize  several  criteria  according  to  the  user’s  choices  for  the 
estimation modes, schemes and normalization constraints.

•  Users and researchers often feel uncomfortable especially as compared to 
the traditional covariance-based SEM.

•  Features of a global index:
–  compromise between outer and inner model performance;

–   bounded between a maximum and a maximum



The PLS approach to CB-LVPM  – Antwerp, Belgium, 29th April 2016 

Godness of Fit index 

G. Russolillo – slide  89 

Validation of 
the inner model 

Validation of 
the outer model 

The  validation  of  the  inner 
model is obtained as average of 
the  R2  values  of  all  the 
structural relationships.

The validation of the outer model is 
obtained as average of the squared 
correlations between each manifest 
variables  and  the  corresponding 
latent  variable,  i.e.  the  average 
communality!

GoF = 1

Pq
q:Pq>1
∑

Cor2 x pq,ξq( )
p=1

Pq

∑
q:Pq>1
∑ × 1

Q* R2 ξq*,ξ j  explaining  ξq*( )
q*=1

Q*

∑
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Mediation 
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Mediated effect 

Mediator: a variable that is intermediate in the causal process 
relating an independent to a dependent variable.
 

G. Russolillo – slide  91 

§  A mediator is a variable in a chain whereby an independent variable causes 
the mediator which in turn causes the outcome variable (Sobel, 1990) 

§  The generative mechanism through which the focal independent variable is 
able to influence the dependent variable (Baron & Kenny, 1986) 

§  A variable that occurs in a causal pathway from an independent variable to a 
dependent variable. It causes variation in the dependent variable and itself is 
caused to vary by the independent variable (Last, 1988) 
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Single mediator model 

MEDIATOR 

(INTERVENING) 
M 

INDEPENDENT 
VARIABLE 

DEPENDENT 
VARIABLE 

G. Russolillo – slide  92 
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Mediation Causal Steps Test 

à Series of steps described in Judd & Kenny (1981) and Baron 
& Kenny (1986).

à One of the most widely used methods to assess mediation in 
psychology.

à Consists of a series of tests required for mediation as shown in 
the next slides.

G. Russolillo – slide  93 
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Mediator model: Total Effect  

MEDIATOR 

M 

INDEPENDENT 
VARIABLE 

X Y 

DEPENDENT 
VARIABLE 

c 

1.  The independent variable causes the dependent variable: 

Y = i1 + cX + e1 

G. Russolillo – slide  94 
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Mediator model: Direct effect of X on M  
2.  The independent variable causes the potential mediator: 

M = i2 + aX + e2

G. Russolillo – slide  95 

MEDIATOR 

M 

INDEPENDENT 
VARIABLE 

X Y 

DEPENDENT 
VARIABLE 

a 



The PLS approach to CB-LVPM  – Antwerp, Belgium, 29th April 2016 

Mediator model: Direct Effects of M and X on Y  
3.  The mediator causes the dependent variable controlling for 

the independent variable: 

Y = i3+ c’X + bM + e3

G. Russolillo – slide  96 

MEDIATOR 

M 

INDEPENDENT 
VARIABLE 

X Y 

DEPENDENT 
VARIABLE 

b 

c’ 
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Single mediator model 

MEDIATOR 

(INTERVENING) 
M 

INDEPENDENT 
VARIABLE 

DEPENDENT 
VARIABLE 

a b 

c’ 
DIRECT EFFECT 

INDIRECT EFFECT  

INDEPENDENT 
VARIABLE 

X Y 

DEPENDENT 
VARIABLE 

c 
TOTAL EFFECT 

•  Mediated (Indirect) effect : ab 

•  Direct effect : c’ 

•  Total effect : c = ab+c’  

G. Russolillo – slide  97 
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Testing for significant mediation 

G. Russolillo – slide  98 

M is a full (partial) mediator if the following conditions are 
satisfied:
   à c is significant
   à c’ is not significant (still significant but less than c)
   à Indirect effect ab is significant:

1.  Sobel Test:

2.  Bootstrap confidence interval

z = ab
a2sb

2 +b2sa
2 Standard error of the 

mediated effect 
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PLS-PM  
an example for measuring Customer Satisfaction  
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European Customer Satisfaction Index (ECSI) Model 
Perceptions of consumers on one brand, product or service 

Image

Expectation

Perceived 
Quality

Perceived 
Value

Satisfaction

Loyalty

Complaints

IMAG1 IMAG2 IMAG3 IMAG4 IMAG5

CUEX1 CUEX2 CUEX3

PERQ1

PERQ2

PERQ3

PERQ4 PERQ5 PERQ6 PERQ7

PERV1

PERV2

CUSA1 CUSA2

CUSA3

CUSCO

CUSL1 CUSL2 CUSL3

•  ECSI is an economic indicator describing how the satisfaction of a customer is modeled
•  It is an adaptation of the « Swedish Customer Satisfaction Barometer » and of the « 

American Customer Satisfaction Index (ACSI) proposed by Claes Fornell
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Application to mobile data 

G. Russolillo – slide  101 

All the items measured on a Likert scale from 1 (very 
negative point of view on the service) to 10 (vey 

positive point of view on the service) 

Image 

Expectation 

Perceived 
Quality 

Perceived 
Value Satisfaction 

Loyalty 

Complaints 

•  Standardized MVs  
•  Centroid Scheme 
•  Mode A 
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Examples of Manifest Variables 

Customer expectation 
Customer satisfaction 

1.  Overall satisfaction 
 
2.  Fulfilment of expectations 
 
3.  How well do you think “your 

mobile phone provider” 
compares with your ideal 
mobile phone provider ? 

    

1.  Expectations for the overall quality 
of “your mobile  phone provider” at 
the moment you became customer of 
this provider. 

 
2.  Expectations for “your mobile phone 

provider” to provide products and 
services to meet your personal need. 

 
3.  How often did you expect that things 

could go wrong at “your mobile 
phone provider” ? 
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Examples of Manifest Variables 

Customer loyalty 

1.  If you would need to choose a new mobile phone provider how 
likely is it that you would choose “your provider” again ? 

 
2.  Let us now suppose that other mobile phone providers decide to 

lower fees and prices, but “your mobile phone provider” stays at 
the same level as today. At which level of difference (in %) would 
you choose another phone provider ? 

 
3.  If a friend or colleague asks you for advice, how likely is it that 

you would recommend “your mobile phone provider” ? 
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Final thoughts about PLS and SEM 
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Component-based methods vs. Factor-based 
methods 

G. Russolillo – slide  105 

Latent	variable	or	linear	composite?	

•  In	component-based	SEM	the	“latent	variables”	are	defined	as	
linear	composites		or	weighted	sums	of	the	manifest	variables.	
They	are	fixed	variables	(scores)	

•  In	covariance-	based	SEMs	the	latent	variables	are	equivalent	to	
common	factors.	They	are	theoreEcal	variables	

	

	This	leads	to	different	parameters	to	esEmate	for	latent	variables,	i.e.:	
•  	factor	means	and	variances	in	covariance-based	methods		
•  	weights	in	component	based	approaches		

Casewise	scores	are	essenEal	in	several	applicaEons	where	
observaEons	count…	

PLS-PM	is	a	component-based	method,		and	we	should	see	this	
character	as	a	strength.		
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Prediction-oriented of confirmatory approach? 
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Reproducing	model	parameters	is	not	the	same	thing	as																																	
making	valid	predicEons	about	individual	observaEons.				
				“Factor-based	methods	are	fundamentally	unsuitable	for	predic6on,	especially	for		
							predic6on	outside	the	dataset	used	to	es6mate	the	factor	model,	because	of	factor					
							indeterminacy”	(Rigdon,	2014)	
	
	

PLS	is	a	predic8on-oriented	method	

Using	an	inwards-directed	measurement	model	in	PLS-PM	produces	
higher	R2	values	for	proxies	of	endogenous	construct.	It	provides	most	
accurate	in-of-sample	predic8on	

Using	an	outwards-directed	measurement	model	in	PLS-PM	produces	
higher	 R2	 values	 in	 regression	 with	 observed	 variables.	 It	 delivers	
beTer	predicEon	on	out-of-sample	data	
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PLS as a SEM estimator 

G. Russolillo – slide  107 

Could we consider PLS-PM as a SEM estimator?

NO, because:

•  Lack of unbiasedness and consistency

YES, because: 

•  Consistency at large, i.e. large number of cases and of indicators for 
each latent variable (“finite item bias”)

•  PLSc  (Dijkstra and Henseler,  2015), PLS algorithm yield all the 
ingredients  for  obtaining  CAN  (consistent  and  asymptotically 
normal)  estimations  of  loadings  and LVs squared correlations  of  a 

'clean' second order factor model.

The correction factor for weights is equal to: 
					

qqqqqq

qqqq
q diag

diag
c
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wSSw

ˆ))ˆˆ(ˆˆ(ˆ
ˆ))((ˆ

:ˆ '''

'

−
−

=



The PLS approach to CB-LVPM  – Antwerp, Belgium, 29th April 2016 

PLS as a SEM estimator: recent standpoints 

G. Russolillo – slide  108 

“PLS	 path	 modeling	 should	 separate	 itself	 from	 factor-based	 SEM	 and	 renounce	 en6rely	 all	
mechanisms,	frameworks	and	jargon	associated	with	factor	models…	
Without	rejec6ng	rigor,	but	defining	rigor	in	composite	terms…”	
	

Ed	Rigdon	(2012)	

Rethinking	PLSPM:	In	Praise	of	Simple	Methods	

Long	Range	Planning,	341-358	

“I	wish	to	maintain	the	double-sided	nature	of	PLS	that	characterized	it	from	the	very	start.	In	the	
family	 of	 a	 structural	 equa6ons	 es6mators	 PLS,	 when	 properly	 adjusted,	 can	 be	 a	 valuable	
member	as	well…”	
	
“Our	 task	 is	 to	 find	 out	 which	 approach	 works	 best	 in	 which	 circumstances...Let	 us	 establish	
empirically	 where	 each	 works	 best.	 For	 problems	 in	 well-established	 fields	 highly	 structured	
approaches	 like	mainstream	SEM	may	be	appropriate,	other	fields	will	be	well	 served	by	highly	
efficient	means	of	extrac6ng	informa6on	from	high	dimensional	data...”	
	

Dijkstra	(2014)	
PLS’	Janus	Face	–	Response	to	Professor	Rigdon’s	‘Rethinking	Par6al	Least	Squares	Modeling:		In	Praise	of	Simple	Methods’	

Long	Range	Planning	
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Multi-component estimation for 
Predictive PLS-PM 
 
PLS Regression for outer model regularization in PLS-PM 
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wq  
Initial 
step 

tq prop to ±Xqwq if 
Mode PLScore
tq = ±Xqwq if Mode 
PLScow
 

tq2 

tq1 

tqq 

zq 



eq1 

eq2 

eqq Mode PLScore (inwards directed links): PLS 
Regression under the classical PLS-PM constraints 
of unitary variance of the composite scores
Mode PLScow (outwards directed links): PLS 
Regression under the constraints of normalized 
outer weights
 

Choice of weights eqq’: 
- Centroid: correlation signs 
- Factorial: correlations 
-  Path weighting scheme: multiple regression 
coefficients or correlations Update weights W 

Reiterate till 
Numerical 

Convergence 

Outer 
estimation 

Inner 
estimation 

Integrated PLS Regression-based Approach to 
PLS-PM algorithm 

MVs are centered or standardized 

G. Russolillo – slide  110 
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PLS Regression rationale 
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Research  of  m  (value  chosen by  cross-validation or  defined by the 
user) orthogonal components vmq = Xqamq which are as correlated as 
possible to zq (from the inner estimation step) and also explanatory of 
their own block Xq .

Cov2(Xqamq , zq) =  Cor2(Xqamq , zq)*Var(Xqamq) 

PLS1 (regression) Mode leads to a compromise between a multiple 
regression of zq on Xq (Mode B) and a principal component analysis 
of  Xq (Mode A for a single block)
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PLS Regression algorithm in PLS-PM  

G. Russolillo – slide  112 

1.   First PLS component v1q (with xpq standardized as well): 
 
 
 

   
2.  Normalization of the vector a1q= (a11q,…,a1pq) 
3.  Regression of zq on v1q=Xqa1q expressed in terms of Xq 
4.  Computation of the residuals zq1 and   Xq1 of  the  regressions  

of  zq  and  Xq  on v1q:  zq = c1qv1q + zq1 and   Xq = v1qp’1q + Xq1 

v1q = Xqa1q =
1

cor 2
p
∑ zq,x pq( )

cor
p
∑ zq,x pq( )× x pq

For successive components the procedure is iterated on residuals 
and assessed by means of cross-validation or stopped by the user 
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PLS Regression algorithm in PLS-PM  

G. Russolillo – slide  113 

Finally, the m-components PLS regression model yielding the weights 
for the outer estimate, as each component can be expressed as a 
function of X :

zq = c1qv1q + c2qv2q + ... + cmqvmq + res
   = c1qXqa1q + c2qX1qa2q + ... + cmqXm−1qamq + res

   = c1qXa1q + c2qXa2q
* + ... + cmqXamq

* + res

   = Xq c1qa1q + c2qa2q
* + ... + cmqamq

*( )+ res
   = Xqwq + res = w1qx1q +w2qx2q + ... +wpqx pq + res  

tq Further	transformed	so	as	to	sa8sfy	the	
classical	normaliza8on	constraint:	Var(tq)=1	
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Features of the integrated PLS approach 

G. Russolillo – slide  114 

•  No  need  to  invert  Xq’Xq  (i.e.  takes  full  advantage  of  the 
NIPALS algorithmic approach)

•  Decomposition  into  common  (explanatory)  and  distinctive 
dimensions

•  Criterion  of  fairness  across  blocks,  i.e.  takes  into  account 
heterogeneous levels of noise

•  Number of  dimensions  in  each block chosen in  coherence 
with a prediction purpose

•  Choosing a different number of dimensions per block does 
not affect normalization constraints      
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Two possible normalization constraints for PLS 
regression Modes  
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PLScore Mode:
PLS  Mode  oriented  to  maximizing  correlations  between  connected 
composites under normalization constraints on composite scores   

Normaliza8on	constraints	on	

Outer	weights		
(like	in	RGCCA)	

Composite	scores		
(like	in	PLS-PM)	

PLScow Mode:
PLS  Mode  oriented  to  maximizing  covariances  between  connected 
composites under normalization constraints on outer weights   

Oriented	to	
Covariances	between	LVs	

CorrelaEons	between	
LVs	

PLScow	

PLScore	
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PLS regression Modes in PLS-PM and Ridge 
Mode in RGCCA 
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Mode
A

New Mode
B

New Mode
A

Mode
B

Standard PLS-PM

PLScow Mode

PLS-R as an estimation method for measurement model in standard PLS-PM 
(normalization constraints on composite scores)  

PLS-R as an estimation method for measurement model in a modified PLS-
PM (normalization constraints on outer weights)

wq =1wq =1

Xqwq =1Xqwq =1

Correlation approach

Covariance approach

[ Wold, 1975; Tenenhaus et al., 2005][ Esposito Vinzi et al., 2009]

PLScore Mode

 Mode PLS in XLSTAT-
PLSPM and in plspm R pack

τ q = 0

τ q =1

mq = Pq

mq = Pq

mq =1

mq =1
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Hbat Model (Hair et al., 2010) with noisy variables 
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Environmental 
Perceptions

Attitude 
toward 

Coworkers

Job
Satisfaction

Organizational
Commitment

Staying 
intention

JS1

OC4OC3OC2OC1

AC1

AC2

AC4

AC3

SI1

SI2

SI4

SI3

EP1

EP2

EP4

EP3

JS5JS4JS3JS2

q4q3q2q1 noise4noise3noise2noise1

q variables:  highly correlated among 
them, correlated with the MVs of the 
response  block  SI  and  uncorrelated 
with  all  the  others  variables  in  the 
model

noise  variables:  highly  correlated  among 
them and uncorrelated with all the others 
variables  in  the  model.  In  particular 
orthogonal to the variables related to the 
response block SI.
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PCA of the Org. Commitment (OC + noisy data) 
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The real OC manifest 
variables appear only on the 

3rd PC 
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PLS Regression of the OC noisy data on Staying 
Intention (SI) 
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The noise variables are 
downweighted as they have 

no predictive power 
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PLS Regression for the OC outer model in PLS-PM 
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A comparison between Modes PLScore, A and B: 
outer weights 
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Non-Metric PLS-PM 
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Steven’s measurement scale classification 
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•  Interval and Ratio scales are METRIC structures, i.e. sets where notion of 
distance (metric) between elements of the set is defined. 

•  Nominal and Ordinal scales are NON-METRIC structures (unordered and 
ordered sets). 

•  Statistical analyses based on Pearson's correlation should be performed only 
on metric variables. 
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Ordinal vs Nominal variables 
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Nominal and ordinal variables are categorical variables, i.e. variables 
that associate each observation to one of the m groups defined by 
their categories. 

 

From the mathematical point of view, they are similar: 

•  Both are not continuous variables  

•  Both have no metric properties  

•  Both do have no origin or units of measurements 

 

The only difference between nominal and ordinal variables is that groups 
defined by categories of an ordinal variable can be conceptually ordered. 
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PLS-PM assumptions 
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•  Each variable is measured on a interval (or ratio) scale. 
•  Relationships between variables and latent constructs are linear 

and, consequently, monotonic. 

Two basic assumptions underlying PLS models: 

•  Nominal variables are handle using boolean coding 
•  Ordinal variables (e.g. likert scale items) are coded by numerals 

(1,2,3..) 
•  Linearity is almost never checked 

However, in practice: 
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Three good pratical reasons.. 
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1)  The numbers of categories affects the relative impact of categorical 
variables and generates sparse matrices. 

2)  It measures the impact of the single category, giving up the idea of 
the variable as a whole 

3)  The importance of categories associated to central values of the LV 
distribution is systematically underestimated. 

.. To NOT use boolean coding in PLS-PM 
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The relation between zq and xpq
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ID z x x_a x_b x_c 
obs1 1 a 1 0 0 
obs2 2 a 1 0 0 
obs3 3 a 1 0 0 
obs4 4 b 0 1 0 
obs5 5 b 0 1 0 
obs6 6 b 0 1 0 
obs7 7 c 0 0 1 
obs8 8 c 0 0 1 
obs9 9 c 0 0 1 

R² = 0,675 

x_
a 

ξ 

R² = 0 

x_
b 

ξ 

R² = 0,675 

x_
c 

ξ 

The weight of a MV depends on the linear relation between the MV 
and the LV inner estimate  



The PLS approach to CB-LVPM  – Antwerp, Belgium, 29th April 2016 

Ordinal variables in linear models 
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•  “Ordinal variables are not continuous variables and should not be treated as 
if they were”.  

•  “It is common practice to treat scores 1,2,3…. assigned to categories as if 
they have metric properties but this is wrong.”  

 
•  “Ordinal variables do not have origins or units of measurements” 

•  “To use ordinal variables in SEM requires other techniques than those that 
are traditionally used with continuous variables”   

  
Jöreskog (1994) speaking about covariance-base SEM

These statements are valid in PLS-PM framework too! 
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Scaling 
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•  Scaling a variables means providing the variable with a metric: each 
observed category (or distinct value) of the raw (i.e. to be scaled) 
variable is replaced by a numerical value.  

•  The new scale is an interval scale, independently of the properties of 
the initial measurement scale. 

•  Scaling techniques are generally used to convert a WEAKER 
measurement scale INTO A STRONGER measurement scale.. 

•  However, it can be useful to RE-SCALE a metric variable by 
providing it with a DIFFERENT metric.. 
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Scaling Level 
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•  We don't need to retain all of the properties of the initial 
measurement scale of the variable. 

•  The scaling level is defined by the the properties of the 
initial measurement scale that the reseacher choose to 
retain in the new measurement scale 
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Optimal Scaling (OS) 
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To define a scaling process as optimal, the scaling parameter estimates 
must be: 

à Suitable, as it must respect the constraints defined by the scaling 
level 

à Optimal, as it must optimize the same criterion of the analysis in 
which the OS process is involved. 
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Non-Metric Partial Least Squares 
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Non-Metric Partial Least Squares 
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•  Each raw variable is transformed as               , where                         is the 
vector of optimal scaling parameters and the matrix   defines a space in 
which constraints imposed by the scaling level are respected. 

 

•  Optimal quantification are calculated by means of a PLS-based iterative 
algorithm 

 ̂x ∝ !Xφ  φ ' = φ1…φK( )
!X

The OS principle, applied to PLS-PM, allows us: 

•  Handling numerical, ordinal and nominal variables in the same model 
•  Checking and/or adjusting the data for non-linearity and non-

monotonicity 
•  Dealing with outliers 
•  Suggesting a discretization process 
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Non-Metric PLS Path Modeling algorithm 
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A new PLS algorithm which works (also) as an optimal scaling algorithm: 
NM-PLSPM assigns a scaling (numeric) value to each category (or distinct 
value) k (k = 1 . . . K ≤ N) of raw variables x, such that 

•  It is coherent with the chosen scaling level; 

•  It optimizes the PLS criterion, if any. 

 

Outer weights and scaling parameters are alternately optimized in a 
modified PLS loop where a quantification step is added. 

à  In standard PLS steps the outer weights are optimized for given 
scaling values. 

à  In the quantification step, instead, the scaling values are optimized 
for given outer weights: raw variables are properly transformed 
through scaling (quantification) functions Q()
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NM-PLSPM algorithm iteration 
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Outer Estimation

Updating the outer weights
(Normalization depending on the Mode)

t1

tq’

zq

 !

e1q

e2q

eq’q

t2 Inner 
Estimation

Updating  the inner 
weights eq’q:

Centroid, Factorial 
or Path weighting 

scheme
wq ∝ 1/ n( )Xq

' zq  (Mode A)

wq ∝ Xq
' Xq( )−1

Xq
' zq (Mode B)

 

x̂ pq ∝Q !X pq ,zq( )   (Mode (new) A)

x̂ pq ∝Q !X pq ,x pq
*( )      (Mode B)

Quantification 
step

tq = Xqwq
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NM-PLSPM general criterion 
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s.t.   x̂ pq
2
= !X pqφpq

2
= n

       X̂qwq

2
= n  if Mode B for block q

       wq

2
= n  if New Mode A for block q

argmax
wq , φpq , Xpq

cqq 'g cor X̂qwq, X̂q 'wq '( ) var X̂qwq( ) var X̂q 'wq '( )!
"#

$
%&

q≠q '
∑
)
*
+

,+

-
.
+

/+

Each time the PLS-PM algorithm converges to a criterion, the corresponding 
Non-Metric version converge to the same criterion 
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PLSPM R-package 
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The NN-PLSPM algorithm is implemented in the R-package plspm: 

•  Nominal Scaling, in which the following group constraint is considered: 

 
•  Ordinal scaling,  in which a further order constraint is considered: 
 

xi ~ xi '( )⇒ x̂i = x̂i '( )

� 

xi
* ~ xi '

*( ) ⇒ ˆ x i = ˆ x i '( )   

� 

xi
* ≺ xi '

*( ) ⇒ ˆ x i ≤ ˆ x i '( )and

Two types of quantification are currently allowed: 
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An application to the Russett data (1965) 
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•  gini: Gini’s index of concentration; 
•  farm: complement of the percentage of farmers that own half of the lands, starting with 

the smallest ones. Thus if farm is 90%, then 10% of the farmers own half of the lands; 
•  rent: percentage of farm households that rent all their land. 
 
•  gnpr: gross national product pro capite (in U.S. dollars) in 1955; 
•  labo: the percentage of labor force employed in agriculture. 
 
•  inst: an index, bounded from 0 (stability) to 17 (instability), calculated as a function of 

the number of the chiefs of the executive and of the number of years of independence 
of the country during the period 1946-1961; 

•  ecks: the Eckstein’s index, which measures the number of violent internal war 
incidents during the same period; 

•  death: number of people killed as a result of violent manifestations during the period 
1950-1962; 

•  demo: a categorical variable that classifies countries in three groups: stable democracy, 
unstable democracy and dictatorship. 
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Russet data (1964): Quantifications 
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Russet data (1964): Model comparison 
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PLS Model: 
•  R2 = .605 
•  GoF = .567 

NM-PLS Model: 
•  R2 = .793 
•  GoF = .772 
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Application to mobile data 
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All the items measured on a Likert scale from 1 (very 
negative point of view on the service) to 10 (vey 

positive point of view on the service) 

Image 

Expectation 

Perceived 
Quality 

Perceived 
Value Satisfaction 

Loyalty 

Complaints 

•  Standardized MVs  
•  Centroid Scheme 
•  Mode A 
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Mobile data: Comparing model quality 
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GoF = 0.471
R2 = 0.387
ComM = 0.599
RedM = 0.263

GoF = 0.526
R2 = 0.464
ComM = 0.618
RedM = 0.315

GoF = 0.547
R2 = 0.495
ComM = 0.623
RedM = 0.335

Linearity hypothesis 
(No scaling) 

Monotonicity hypothesis 
(Ordinal Scaling) 

No hypothesis 
(Nominal Scaling) 
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Mobile data:  
Ordinal quantification for perceived quality 
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Perceived Quality Latent Variable: 7 indicators 
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Mobile data:  
Nominal quantification for perceived quality 
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Perceived Value: 2 manifest variables 
•  PerVal1: Given the quality of the product and services offered by your mobile phone provider, how would 

you rate the fees and the price that you pay for them? 

•  PerVal2: Given the fees and the price of the product and services offered by your mobile phone provider, 
how would you rate the quality of the products and services offered by your mobile phone provider? 
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